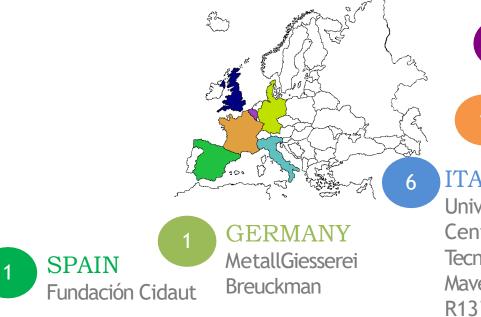


How copper contributes to sustainable mobility The ReFreeDrive project

Fernando Nuño – European Copper Institute 3rd September 2020


This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 770143

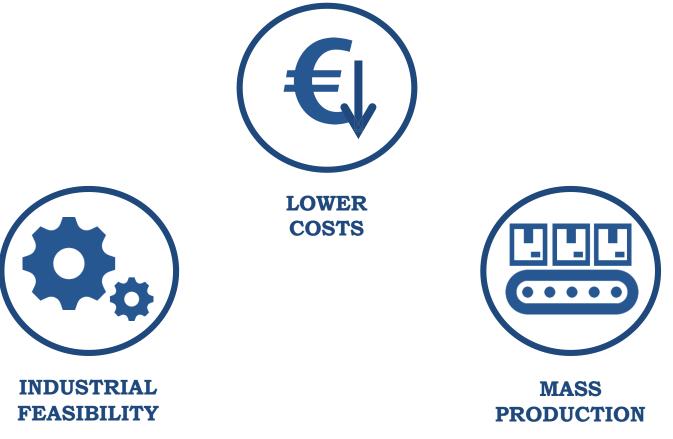
General Figures

Title: Rare earth free e-Drives featuring low cost manufacturing Grant Agreement No: 770143 **Topic:** GV-04-2017 **Project Total Costs:** 5,999,131.25€ **Total EU Contribution:** 5,999,131.25€

FRANCE **IFP Energies nouvelles**

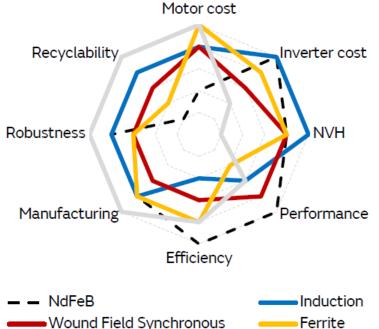
ITALY

Universitá degli studi dell'Aquila Centro Sviluppo Materiali Tecnomatic Mavel R13 Technology Privé


This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 770143

Project Objectives

• The main aim of this project is to develop rare earth-free traction technologies

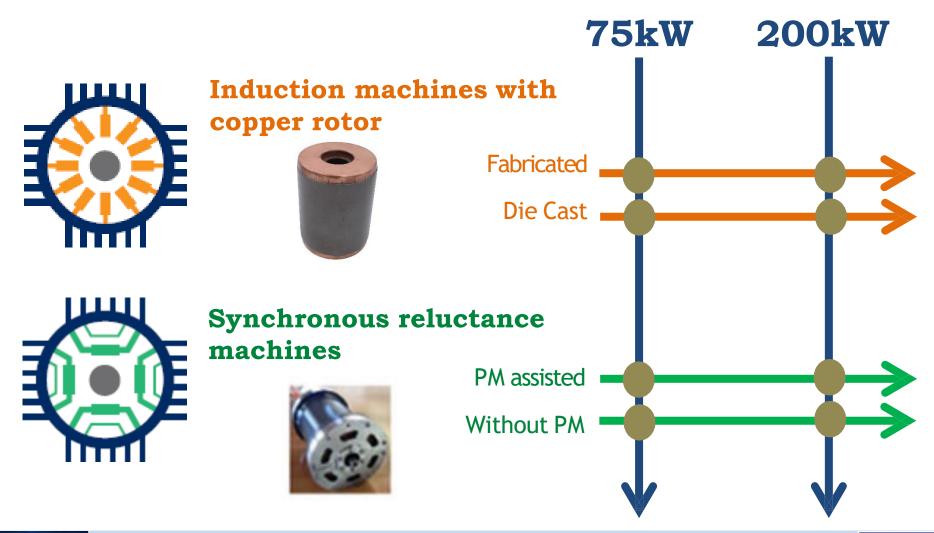


Generic Technology Comparison

ReFreeDrive

	1					Moto
	PM	IM	WS	FM	SR	Recyclability
Performance	++	0	+	-	0	
Efficiency	++	-	0	+	+	
Motor cost	-	+	+	++	++	Robustness
Inverter cost	++	++	0	+	-	
Robustness	+	+	0	0	++	
Overload	0	++	+	-	+	Manufacturing
Stall torque	0	++	0	0	0	
Manufacturing	+	+	0	+	++	Effic
NVH	+	++	+	+		— — NdFeB
Recyclability		+	0	-	++	Wound Field Synchror
Power @ max. speed	+	-	++	-	++	Switched Reluctance

Each traction motor must be tailored to vehicle requirements, customer expectations, architectures, scalability, volumes and even current status of material supply and supplier capability, making each type of motor a potential candidate within a vehicle to benefit a specific purpose


Source: Jaguar Land Rover – Coiltech 2019 presentation - http://www.refreedrive.eu/download-our-coiltech-2019-presentations

Project Technologies

5

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 770143

Target figures

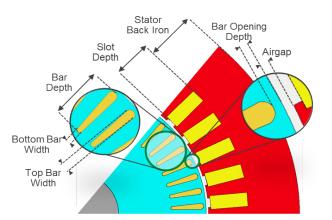
INCREASE SPECIFIC TORQUE BY 30%

KG

REDUCE MOTOR ENERGY LOSSES BY 50%

6

ST ION C DNS INCREASE POWER DENSITY IN POWER ELECTRONICS BY 50%



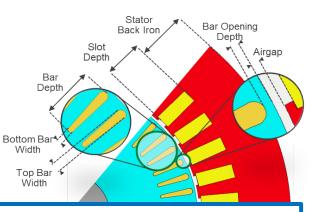
Induction motor design

Radial Geometry

Peak performance is met and the efficiency over the WLTP3 drive cycle is about 95% (motoring).

Motor variant	Induction	
DC-link voltage	720 V	
Max. modulation	0.98	
Max. current	500 Arms	
Required inv. kVA	430 kVA	
Peak torque	380 Nm	
Maximum speed	20,000 rpm	
Gear ratio	13.55	
Peak overall power	300 kW	
Peak power @nmax	150 kW	

7



Induction motor design

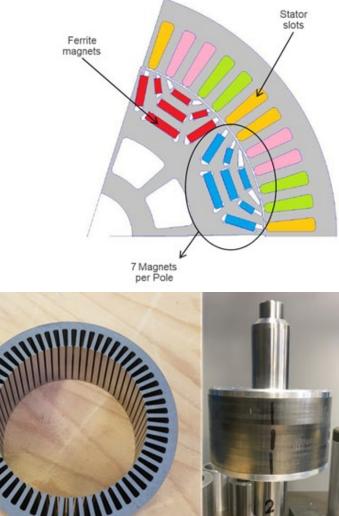
Radial Geometry

Peak performance is met and the efficiency over the WLTP3 drive cycle is about 95% (motoring).

Scaling results for final design

Rated peak power [kW]	Peak torque [Nm]	Maximum efficiency [%]	Maximum DC voltage [V]	RMS line current [Arms]	Maximum speed [rpm]
200	378	96	720	500	20000
75	192	95	350	275	13000

reak overall power	500 KW
Peak power @nmax	150 kW

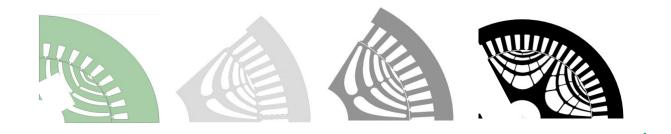


PM Synrel motor design

ReFreeDrive

Peak performance is met and the efficiency is about 96% (motoring).

Motor variant	Ferrite SynRel	
DC-link voltage	720 V	
Max. modulation	0.98	
Max. current	636 Arms	
Required inv. kVA	550 kVA	
Peak torque	470 Nm	
Maximum speed	18,000 rpm	
Gear ratio	12.19	
Peak overall power	250 kW	
Peak power @nmax	90 kW	


HORIZON 2020

9

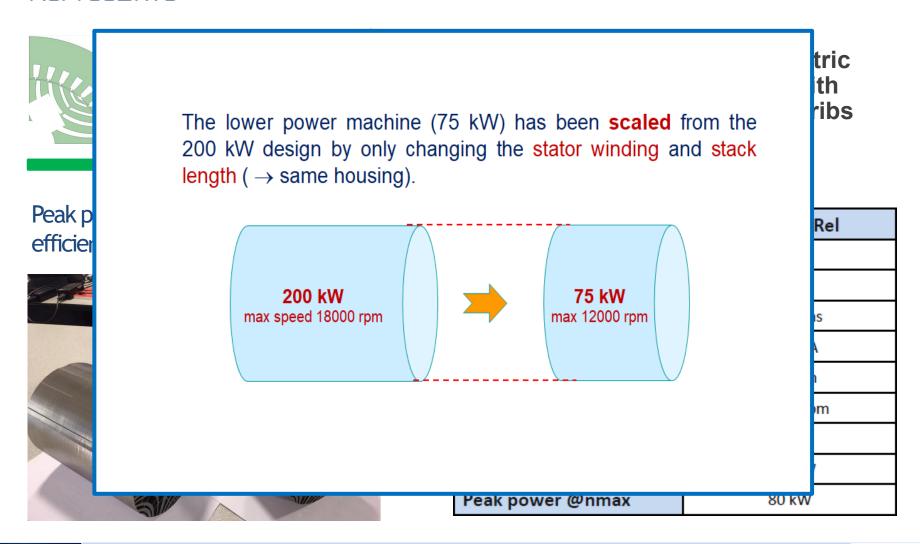
ReFreeDrive Project Overview

Pure Synrel motor design

Asymmetric shape with multiple ribs

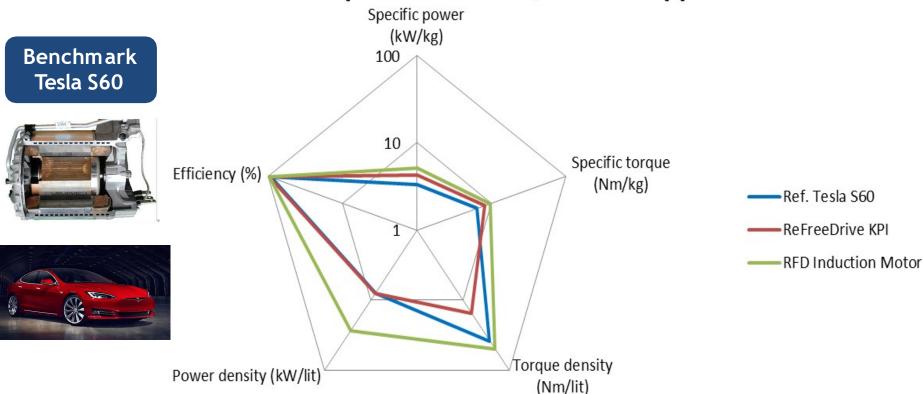
Peak performance is met and the efficiency is about 96% (motoring).

Motor variant	Pure SynRel	
DC-link voltage	720 V	
Max. modulation	0.98	
Max. current	636 Arms	
Required inv. kVA	550 kVA	
Peak torque	415 Nm	
Maximum speed	18,000 rpm	
Gear ratio	12.19	
Peak overall power	290 kW	
Peak power @nmax	80 kW	



ReFreeDrive Project Overview

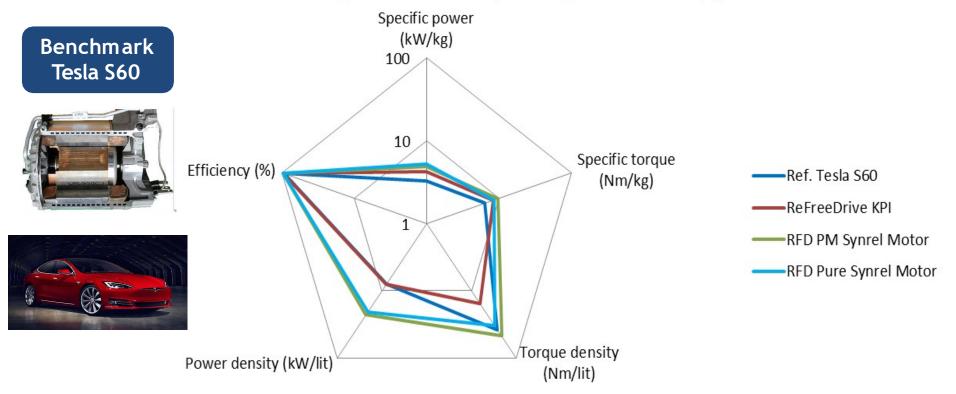
Pure Synrel motor design



HORIZON 2020

Achieved figures

KPI comparison for IM @ 200kW application



Achieved figures

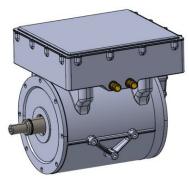
KPI comparison for Synrel @ 200kW application

Achieved figures

200kW Benchmark: Tesla S60

75kW Benchmark: Nissan Leaf 2012

Parameter (unit)	Tesla S60	Nissan Leaf 2012	75 k W design	200 k W design
Specific Power (kW/kg)	13,3	4,9	7,5	18-20
Power Density (kW/lit)	11,7	5,7	9,47	20-22
Efficiency (%)	-	95	98,7	98,5
Power electronicsCost (\$/kW)	-	13	6	3



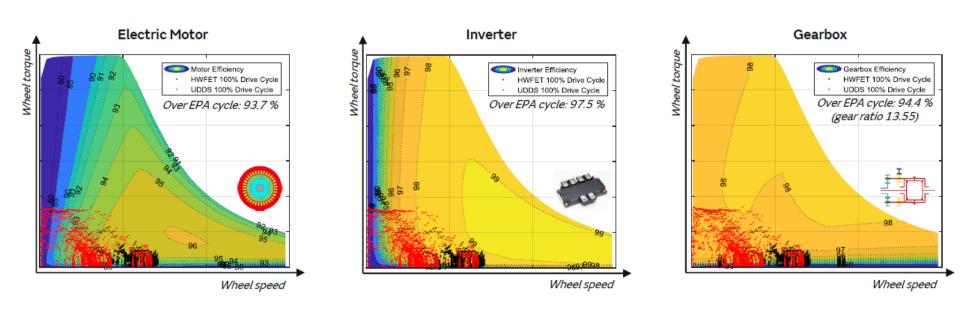
3 technologies comparison

Three rare-earth free motor variants were developed within ReFreeDrive to allow integration within a Jaguar Land Rover high performance vehicle: an induction motor, a ferrite-assisted synchronous reluctance motor and a pure synchronous reluctance motor

Motor variant	Induction	Ferrite SynRel	Pure SynRel
DC-link voltage	720 V	720 V	720 V
Max. modulation	0.98	0.98	0.98
Max. current	500 Arms	636 Arms	636 Arms
Required inv. kVA	430 kVA	550 kVA	550 kVA
Peak torque	380 Nm	470 Nm	415 Nm
Maximum speed	20,000 rpm	18,000 rpm	18,000 rpm
Gear ratio	13.55	12.19	12.19
Peak overall power	300 kW	250 kW	290 kW
Peak power @nmax	150 kW	90 kW	80 kW

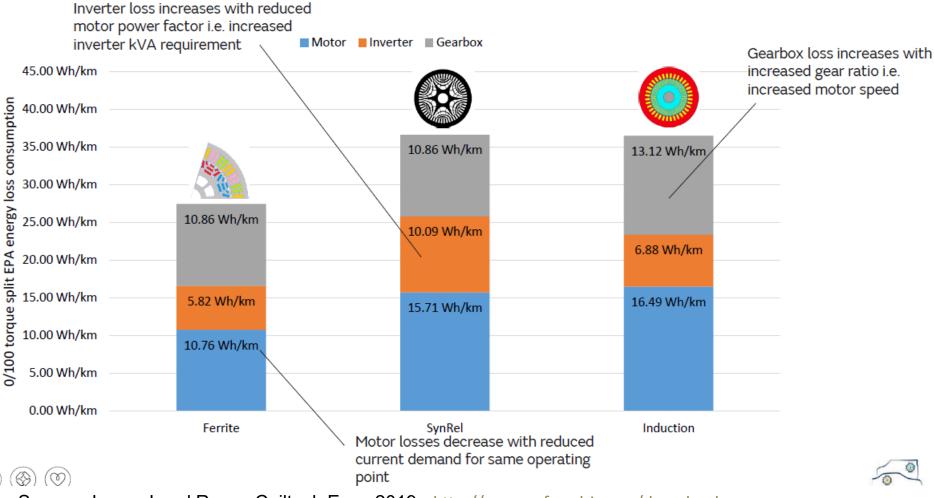
Motor and inverter of the high performance EDU

Mitsubishi FMF800DX-24ASiC module


Source: Jaguar Land Rover, Coiltech Expo 2019 - http://www.refreedrive.eu/downloads

System level efficiency analysis - EPA cycle

Source: Jaguar Land Rover, Coiltech Expo 2019 - http://www.refreedrive.eu/downloads



 ٢

System level efficiency analysis - Energy loss splitdown

ReFreeDrive

Source: Jaguar Land Rover, Coiltech Expo 2019 - http://www.refreedrive.eu/downloads

53

System level efficiency analysis - Energy loss splitdown

	Ferrite SynRel	Pure SynRel	Induction
Overall EPA efficiency	88.9%	85.8%	86.2%
Machine speed	18,000	18,000	20,000
Best overall efficiency	UDDS	Around HWFET drive cycle	At highway cruising speeds and beyond

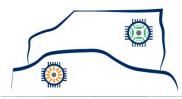
HWFET: Highway Fuel Economy Test cycle UDDS: Urban Dynometeter Driving Schedule

Source: Jaguar Land Rover, Coiltech Expo 2019 - <u>http://www.refreedrive.eu/downloads</u>

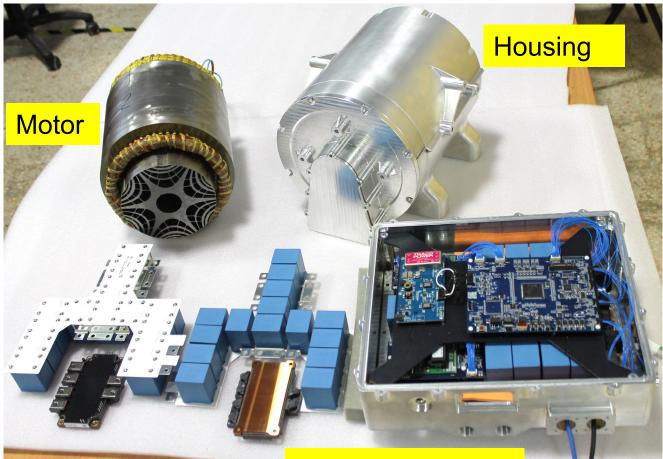
ReFreeDrive Project Overview

Next steps

Ongoing	Late 2020	Late 2020 / Early 2021
Prototypes manufacturing	Integrated powertrain testing	In-vehicle integration
<image/>	<image/>	



Two power level prototypes



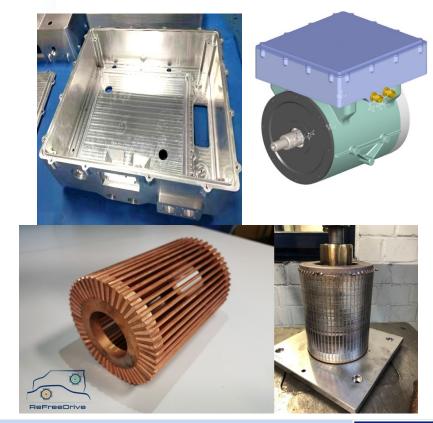
Prototyping the motor, housing and power electronics

ReFreeDrive

Power Electronics

Integrated motor + power electronics Shared liquid cooling

Induction motor prototype manufacturing


Stator Assembly with Hairpin Winding

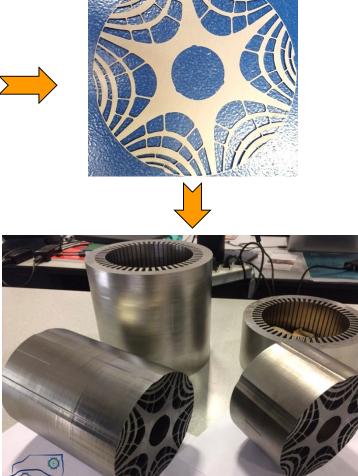
Die-cast Copper Rotor

Inverter Box and Motor Assembly

23

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 770143

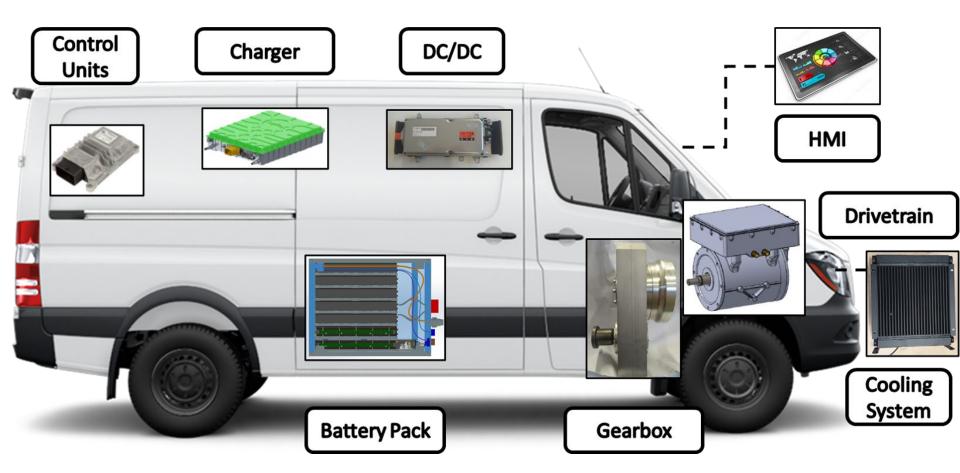
PM Synrel motor prototype manufacturing



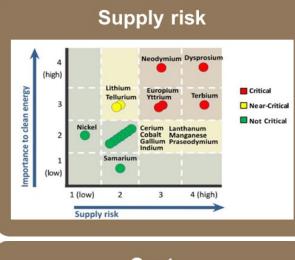
ReFreeDrive Project Overview

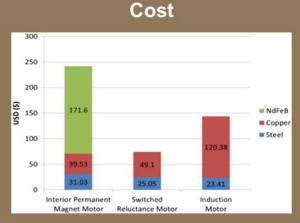
Pure Synrel motor prototype manufacturing

Laser cut of the electrical steel (courtesy of LCD)


This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 770143


In-vehicle integration




HORIZON 2020

The rare earth issue

The use of rare earth-based magnets is challenging for multiple reasons

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 770143

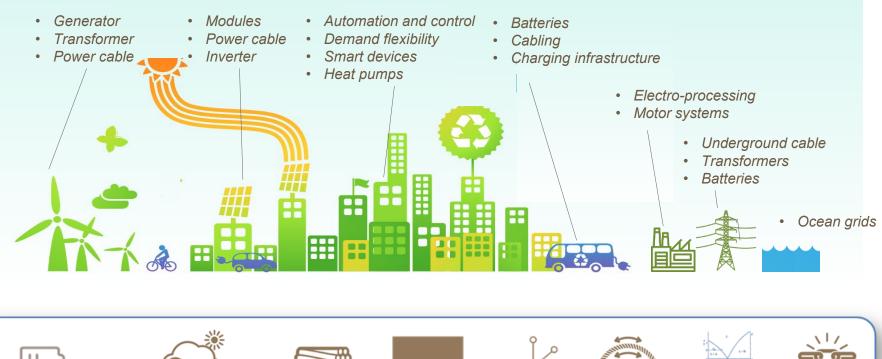
Copper

Aluminium

Steel

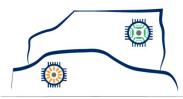
Polyethelene

NdFeB Magnet



HORIZON 2020

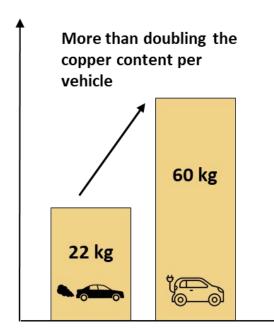
Why copper?


Thanks to its excellent conductivity and properties, copper plays a central role in the energy transition

Electrochemistry Corrosion resistance Conductivity Connectivity Ductility Alloyability Strength

Why copper?

ReFreeDrive

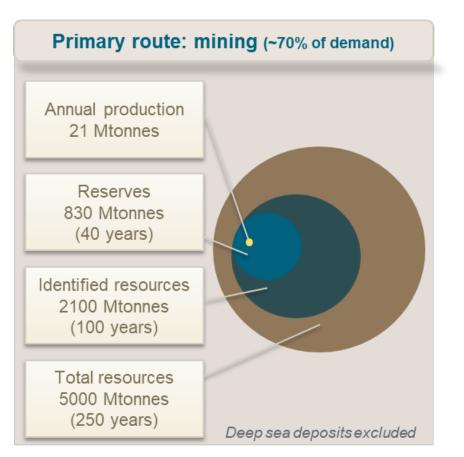

New electromobility components need copper to operate efficiently, driving demand up

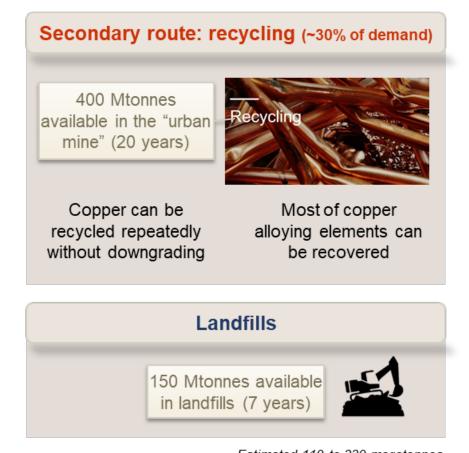
Battery (copper foil, connectors)

Electric motor (stator windings and, in some cases, rotor)

High voltage wiring

Low voltage wiring





Copper is available

There are sufficient mining and recycling copper reserves & resources worldwide to cope with growth

 Meeting future copper demand: https://sustainablecopper.org/meeting-future-copper-demand/
 Estimated 110 to 330 megatonnes

 The World Copper Factbook 2018: https://www.icsg.org/index.php/component/jdownloads/finish/170/2876
 needed for the world energy transition

 Dynamic Analysis of Global Copper Flows. https://pubs.acs.org/doi/10.1021/es400069b

 US Geological Survey (USGS), 2019: https://prd-wret.s3-us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/atoms/files/mcs-2019-coppe.pdf

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 770143

www.copperalliance.org

www.copperalliance.eu

fernando.nuno@copperalliance.eu

www.refreedrive.eu

Linked in.

https://www.linkedin.com/company/ electric-drivetrain-innovation-cluster/

