
Optimization of a High Speed Copper Rotor Induction Motor for a Traction Application

Nicolas Rivière, Research Engineer

25th September 2019, Pordenone, Italy

Overview

- **1. Introduction**
- 2. Specifications
- 3. Analysis Workflow
- 4. E-Mag Optimization
- 5. Thermal Design
- 6. Conclusion

Introduction

ReFreeDrive Project Overview

- Growing interest for EVs to support the transition to a climate-resilient, energy-efficient economy.
- Main expectations from car manufacturers to be addressed by electric motor designers are:
 - 1. Industrial feasibility
 - 2. Mass production
 - 3. High performance
 - 4. Low costs

Introduction

ReFreeDrive Project Overview

- Development of the next-gen of electric powertrains, focusing on rare-earth free traction motors
- Induction Motor (IM) technology considered a potential candidate.

High speed capability

Copper rotor IM

Low cost manufacturing

Die-casted / Fabricated rotor

Hairpin winding technology

Low cost / loss materials

Design optimization

Rotor cooling

And Andrew Construction

ReFreeDrive

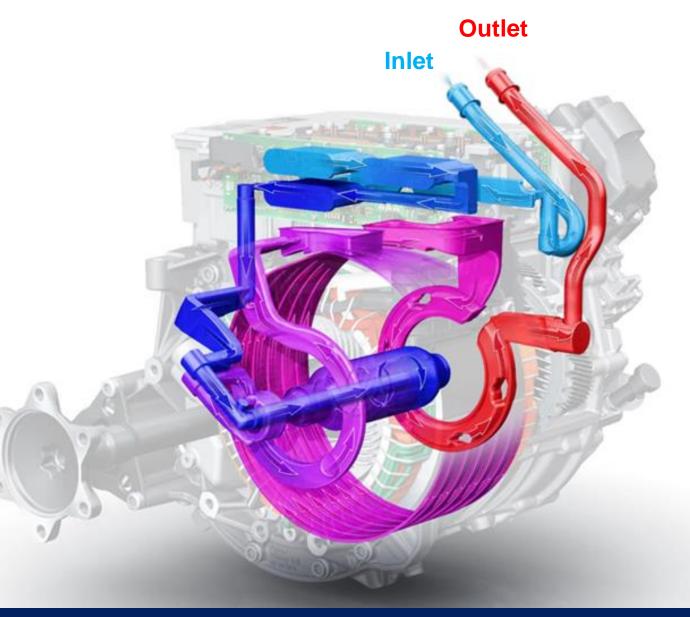
www.motor-design.com

. . . .

Specifications

Boundary Conditions

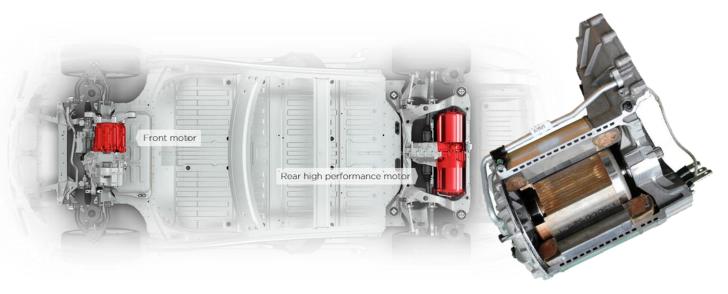
• Target vehicle: Jaguar XJMY21


	Requirement	Value	Unit
S	Peak torque @ Low speed	370	Nm
PE Cooling Performances	Peak power @ Base speed	200	kW
nan	Cont. torque @ Low speed	152	Nm
orn	Cont. power @ Max. speed	70	kW
Cooling	Efficiency over WLTP3 cycle	≥ 94.5	%
	Operating speed	≤ 20000	rpm
bu	Stator cooling system	Water Jacket	-
	Rotor cooling system	Spiral	
D	Coolant flow rate	≤ 10	l/min
Performances	Cooling fluid type	EGW 50/50	
00	Coolant temperature	≤ 90	°C
0	Pressure drop (jacket only)	≤ 20	kPa
Cooling	Stator winding temperature	≤ 180	°C
	Rotor cage temperature	≤ 180	°C
	Inverter current	≤ 500	A _{rms}
	DC Link Voltage	720	Vdc
	Package size envelope	≤ Φ250 x L310	mm
note	or-design.com		5

Specifications

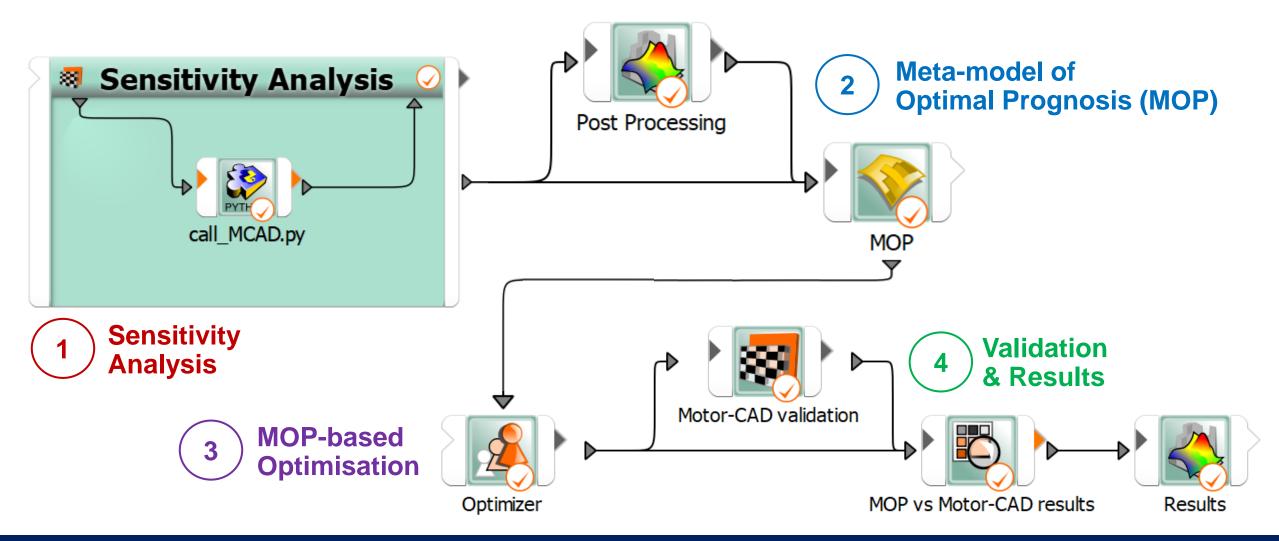
Boundary Conditions – Cooling System

• Reference: Audi e-tron

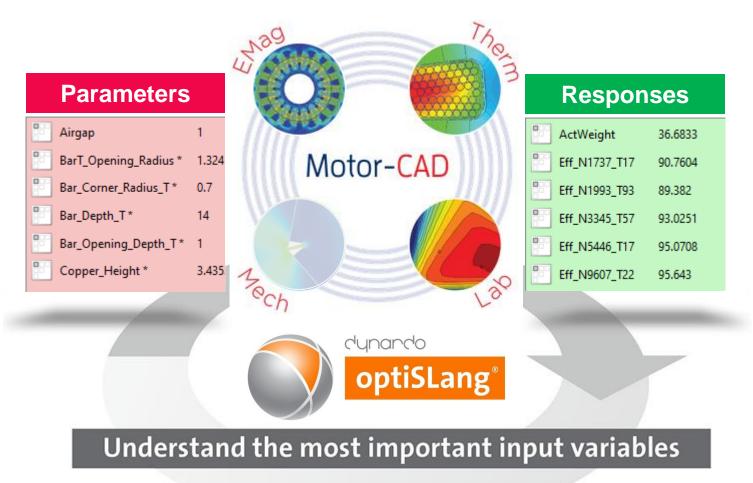


Specifications

Key Performance Indicators (KPIs)


• Reference: Tesla 60S copper rotor induction motor.

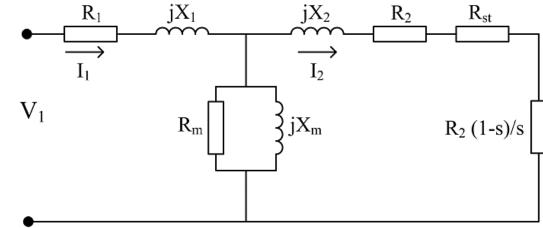
Parameter	Tesla 60S	Target	Unit
Specific power	3.3	≥ 4.3	kW/kg
Power density	-	≥ 8.0	kW/I
Specific torque	6.3	≥ 8.2	Nm/kg
Torque density	-	≥ 15.4	Nm/I
Peak efficiency	93	≥ 96	%


Analysis Workflow

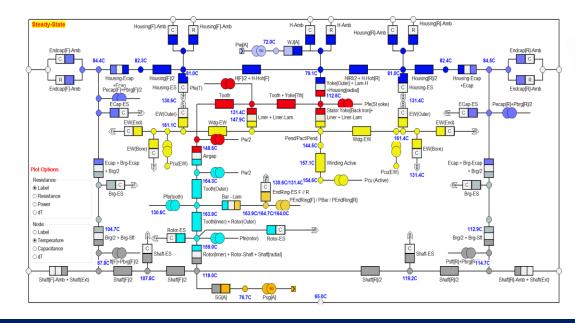
Analysis Workflow

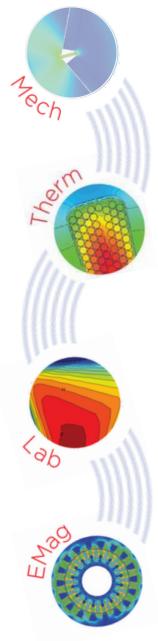
Objectives & Principles

- Motor-CAD & optiSLang coupled for a complete analysis:
 - Fast and effective optimisation over the full machine's operating speed range with good accuracy.
 - Comprehensive multi-physics analysis can be carried out.
 - Rigorous and traceable decisions for the design parameters.
- A meta-model based approach is set up in optiSLang software to optimize the machine.



Analysis Workflow


Performance Evaluation


- A two-stage optimization process is adopted to split the design space in an effective way:
 - 1. Electromagnetic design
 - 2. Thermal design
- The machine's performance are calculated within its electrical and thermal limits.
- Each candidate solution takes approx. 10minutes to be computed in Motor-CAD software.

IM Analytical Magnetic Circuit

Lumped Parameter Thermal Network

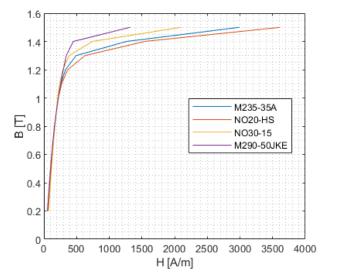
Objectives & Constraints

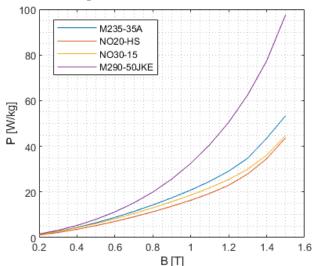
Objectives:

✓ Max Efficiency (WLTP3)✓ Min Active Length

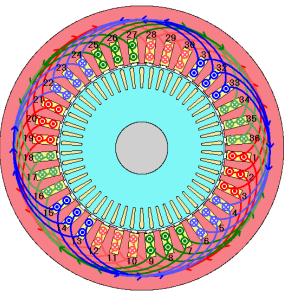
Constraints:

- ✓ Active Weight (kg) @ 44.6
- ✓ Power (kW) @ Base Speed ≥ 200
- ✓ Bar Depth (mm) ≥ 8
- ✓ Bar Opening Radius (mm) ≥ 0.7
- ✓ Bar Corner Radius (mm) ≥ 0.7

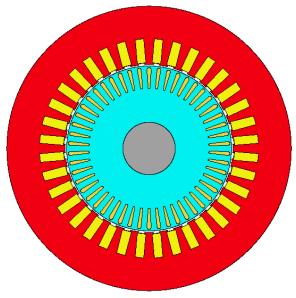

Parameter Start designs	Criteria	Initialization	56	election	Crossover	Mutatio	n Other Result	aesig
Parameter				Respo	nses			
Name	Name Valu Airgap 1 Bar_Bottom_Width_Ratio 0.528633		î	Eff_N	Name Eff_N1737_T17		Value 91.4186	
			•	Eff_N1993_T93 9		90.3532		
Bar_Corner_Radius_T	0.7	Eff_N				94.2224 95.2792 96.045		
Bar_Depth_Ratio	0.38356							Eff_N
Bar_Depth_T	14	Eff_N9607_T22						
Criteria								
Name	Type Exp		pression		Criterion	Limit	valuated expression	
o_Efficiency	Objective	(102*Eff_N1993		3_т93	MAX		-0.941372	
🐠 o_Length	Objective	Stator_Lar	am_Length		MIN		150	
📥 c_Weight	Constraint	ActWeight	ActWeight		≤	44.62	37.3767 ≤ 44.62	
₩ c_P_BS	Constraint	P_N5156_	N5156_Tpeak		≥	200	209.306 ≥ 200	
🖬 c_BarDepth	Constraint	Bar_Depth	_Depth_T		≥	8	14 ≥ 8	
☑ c_BarOpeningRadius	_BarOpeningRadius Constraint BarT_Ope		ening_Radius		≥	0.7	1.32417 ≥ 0.7	
Create new								


Fixed Parameters

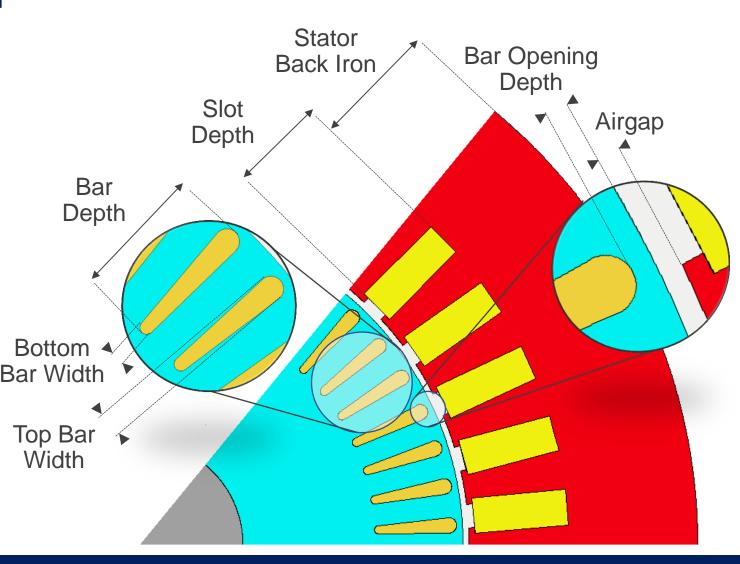
- Machine topology:
 - 4-pole, 36-slot, 50-bar
- Geometry:
 - Stator outer diameter (mm) = 190
- Materials
 - M235-35A steel (rotor & stator)
 - CuAg0.04 (fabricated rotor cage)
 - Cu-ETP (die-casted rotor cage)
- Stator winding:
 - Turns / Phase = 12
 - Packing factor (%) = 73



Specific Losses



Winding pattern



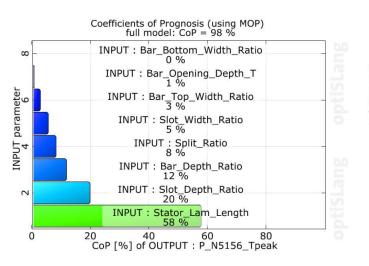
Radial Geometry

Variable Parameters

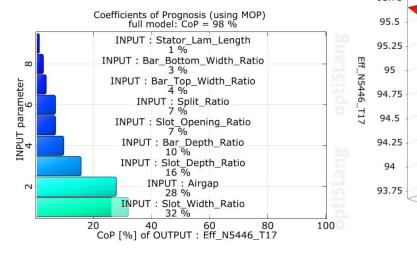
Parameter	Range	Unit
Active length	[100; 175]	mm
Mechanical airgap	[0.8; 1.5]	mm
Split ratio	[0.5; 0.7]	-
Slot depth ratio	[0.3; 0.6]	-
Slot width ratio	[0.4; 0.7]	-
Bar opening depth	[0.5; 1.2]	mm
Bar depth ratio	[0.5; 2.0]	-
Bottom bar width ratio	[0.2; 0.9]	-
Top bar width ratio	[0.3; 0.6]	-

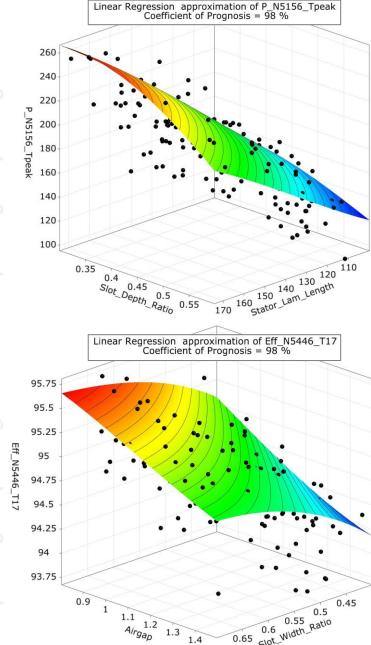
Sensitivity Analysis

- Multi-core processing used in Motor-CAD calculations to build the saturation and loss models.
- One instance of Motor-CAD used – although parallelisation possible in optiSLang.
- Analysis completed in three days:
 - Generated designs: 400
 - Succeeded designs: 357
 - Failed designs: 43
 - Feasible designs: 0

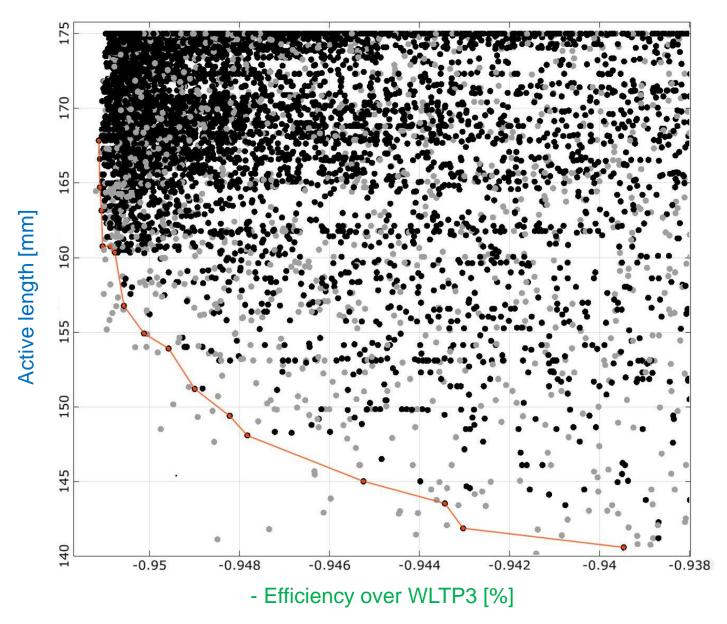

Parameter Start designs Criter		Criteria	a Dynamic sampling Other		Result designs								
ĺd				ible	le Duplicates		Status	Airgap		BarT_Opening_Radius			
1	0.1		true			Succe	eded	0.862125	.862125				
2	0.2		true			Succe	eded	0.900625		1.47693			
3	0.3		true			Succeeded		0.816625		1.46039			
4	0.4	true				Succeeded		1.46588		2.02572			
5	0.5		true			Succeeded		0.806125	06125				
6	0.6 true				Succeeded		1.14037		1.60716				
7	0.7		true	true		Succe	eded	0.844625		1.89833			
8	0.8		true			Succe	eded	1.02837		1.90229			
9	0.9		true			Succe	eded	1.16137		0.956536			
10	0.10		true			Succe	eded	1.45012		0.922359			
11	0.11		true			Succe	eded	1.21737		2.048			
12	0.12		true			Succe	eded	1.03187		1.39384			
13	0.13		true			Succe	eded	1.36962		2.06213			
14	0.14		true			Succe	eded	1.05987		1.15695			
15	0.15		true			Succe	eded	1.05462		1.74886			

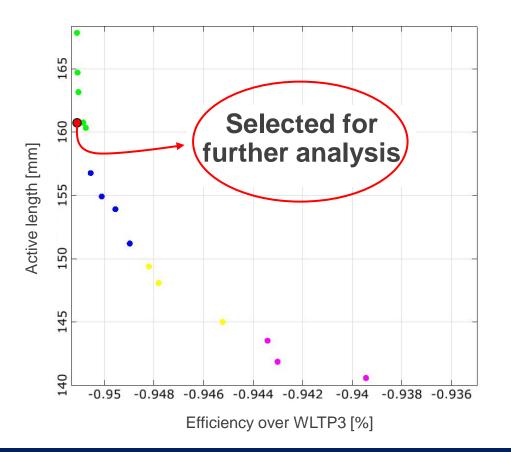
Peak Power @ Base Speed

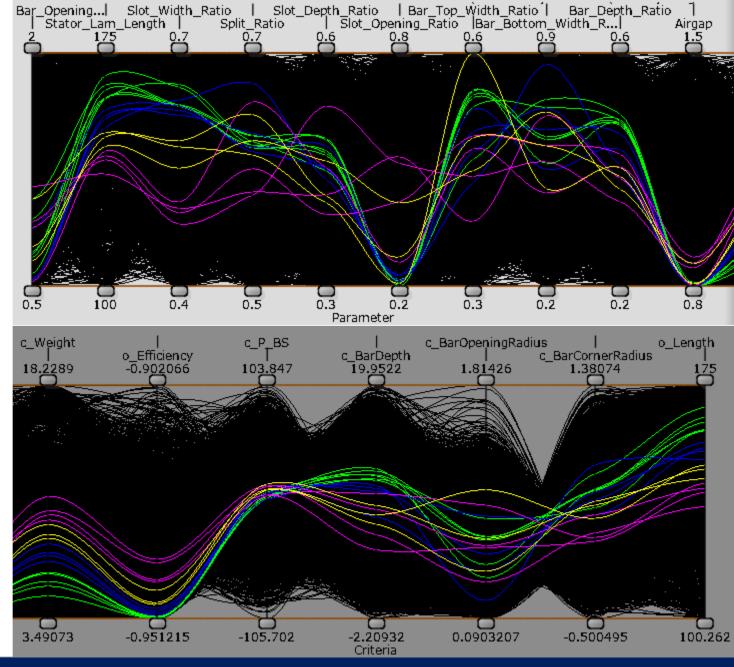

E-Mag Optimization


Metamodel of Optimal Prognosis (MOP)

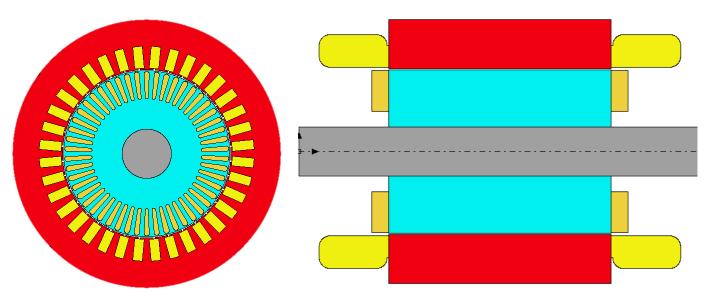
- The calculated MOPs show the optimal subspace for every output parameter of interest.
- The Coefficients of Prognosis, or CoPs, assess the quality of each MOP.
- Additional sampling data can be generated to improve the quality of each MOP..

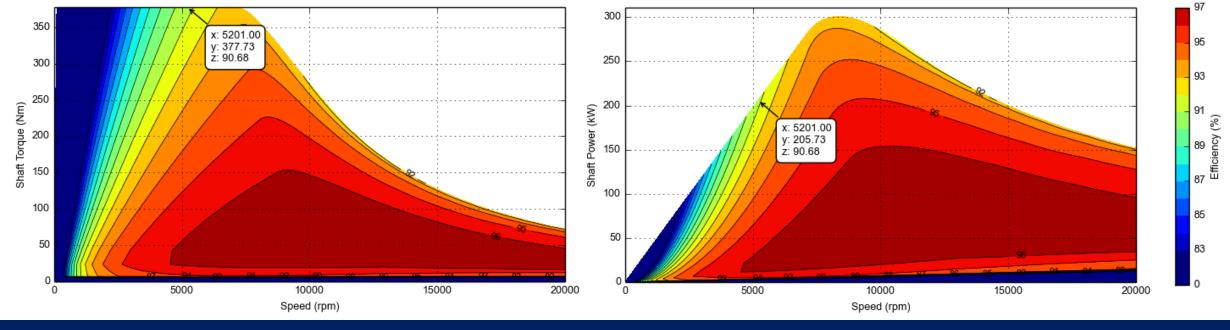

Efficiency @ 17Nm, 5446rpm




Pareto Frontier

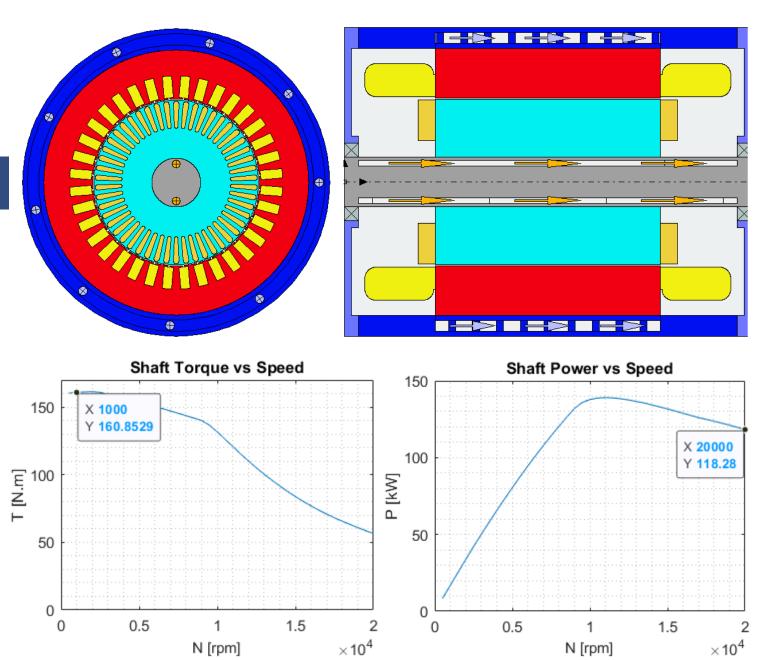
- Solution in which one can trade-off between Efficiency and Volume.
- Important features:
 - Algorithm used: evolutionary
 - Generated designs: 10900
 - Feasible designs: 7616
 - Front designs: 15
 - Simulation time: 10 minutes
- The same optimisation directly applied to Motor-CAD would have taken more than 100 days!


Parallel Coordinate Plot



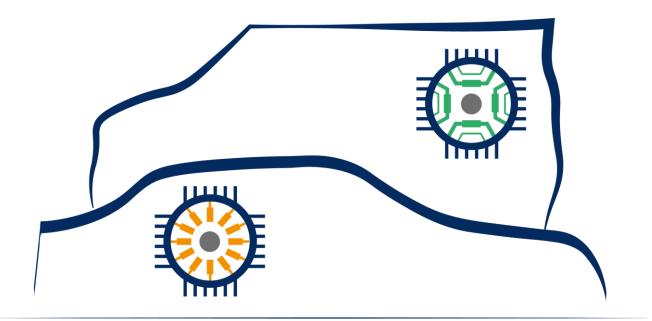
Validation in Motor-CAD

• Peak performance are met and the efficiency over the WLTP3 drive cycle is about 95.05% (motoring).



Thermal Design

Housing WJ + Shaft Cooling Systems


- Same optimization approach used to design the cooling system.
- Variables include flow rates and the cooling channels' dimensions.
- Continuous performance are met with respect to the specification.

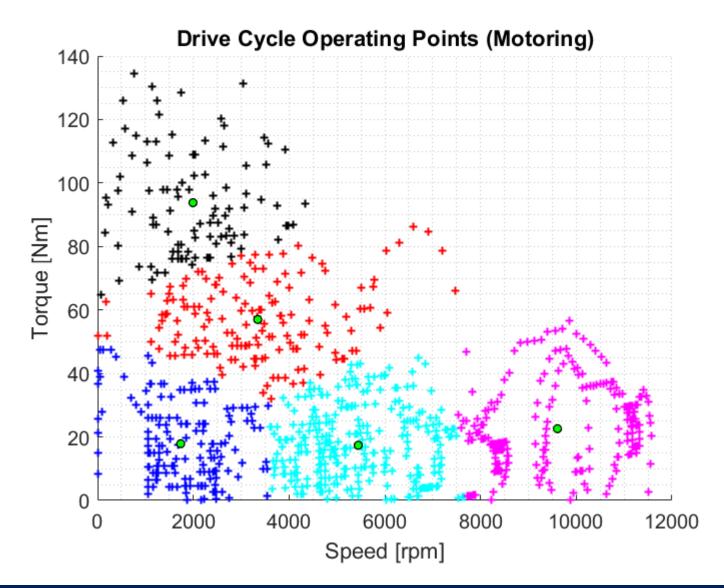
www.motor-design.com

Conclusion

- The design of a 200kW, 20000rpm copper rotor induction motor for a traction application has been presented.
- The machine was optimized electromagnetically and thermally using Motor-CAD and optiSLang software.
- This combination is an incredibly powerful approach to optimise an electric machine for an automotive HEV/EV application.
- The optimized motor is currently being prototyped and will be tested next year. A scaled version will be then integrated on a vehicle powertrain for real performance testing.

ReFreeDrive

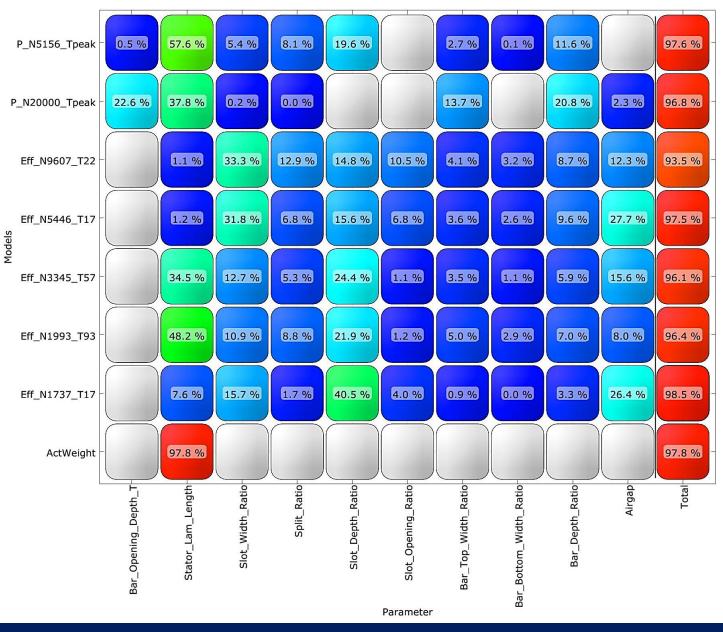
Rare-Earth Free e-Drives feat. low cost manufacturing


This document contains proprietary information of Motor Design Ltd.

Such proprietary information may not be used, reproduced, or disclosed to any other parties for any other purpose without the expressed written permission of Motor Design Ltd. © Motor Design Ltd 2016 All Rights Reserved.

Appendix

Efficiency over WLTP3 Drive Cycle


- The efficiency over the WLTP3 drive cycle is evaluated using five characteristic operating points.
- This clustering method allows to reduce significantly the simulation time in Motor-CAD.
 - Cluster n°1, weight: 164, N = 3345 rpm, T = 57 N.m
 - Cluster n°2, weight: 174, N = 1737 rpm, T = 17 N.m
 - Cluster n°3, weight: 324, N = 5445 rpm, T = 17 N.m.
 - Cluster n°4, weight: 249, N = 9607 rpm, T = 22 N.m
 - Cluster n°5, weight: 102, N = 1993 rpm, T = 93 N.m
 - Centroids

Appendix

CoPs Matrix

- Matrix that shows the CoPs of all output parameters with respect to input parameters:
- The last column contains the full model CoPs of each response.

