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Introduction 

• Growing interest for EVs to support 
the transition to a climate-resilient, 
energy-efficient economy.  

• Main expectations from car 
manufacturers to be addressed by 
electric motor designers are: 

1. Industrial feasibility 

2. Mass production 

3. High performance 

4. Low costs 

ReFreeDrive Project Overview 

3 



Introduction 

ReFreeDrive Project Overview 
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• Development of the next-gen of  
electric powertrains, focusing on 
rare-earth free traction motors  

• Induction Motor (IM) technology 
considered a potential candidate. 

                        Copper rotor IM 

           High speed capability 

     Low cost manufacturing 

  Die-casted / Fabricated rotor 

  Hairpin winding technology 

     Low cost / loss materials 

           Design optimization 

                        Rotor cooling 



Specifications 

Boundary Conditions 
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• Target vehicle: Jaguar XJMY21  

Requirement  Value Unit 

Peak torque @ Low speed 370 Nm 

Peak power  @ Base speed 200 kW 

Cont. torque @ Low speed 152 Nm 

Cont. power @ Max. speed 70 kW 

Efficiency over WLTP3 cycle ≥ 94.5 % 

Operating speed  ≤ 20000 rpm 

Stator cooling system Water Jacket - 

Rotor cooling system Spiral 

Coolant flow rate  ≤ 10 l/min 

Cooling fluid type EGW 50/50 

Coolant temperature ≤ 90 °C 

Pressure drop (jacket only) ≤ 20 kPa 

Stator winding temperature ≤ 180 °C 

Rotor cage temperature ≤ 180 °C 

Inverter current ≤ 500 Arms 

DC Link Voltage  720 Vdc 

Package size envelope ≤ Φ250 x L310 mm 
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Specifications 

Boundary Conditions – Cooling System  
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• Reference: Audi e-tron 

Inlet 

Outlet 



Specifications 

Key Performance Indicators (KPIs) 
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• Reference: Tesla 60S copper rotor 
induction motor. 

Parameter Tesla 60S Target Unit 

Specific power 3.3 ≥ 4.3 kW/kg 

Power density - ≥ 8.0 kW/l 

Specific torque 6.3 ≥ 8.2 Nm/kg 

Torque density - ≥ 15.4 Nm/l 

Peak efficiency 93 ≥ 96 % 



Analysis Workflow 

Sensitivity 
Analysis 
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2 

3 

Meta-model of  
Optimal Prognosis (MOP) 

MOP-based 
Optimisation 

4 
Validation 
& Results 



Analysis Workflow 
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• Motor-CAD & optiSLang coupled 
for a complete analysis: 

Fast and effective optimisation 
over the full machine’s operating 
speed range with good accuracy.  

Comprehensive multi-physics 
analysis can be carried out.  

Rigorous and traceable decisions 
for the design parameters. 

• A meta-model based approach is 
set up in optiSLang software to 
optimize the machine. 

Parameters Responses 

Objectives & Principles 



Analysis Workflow 
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• A two-stage optimization process is 
adopted to split the design space in 
an effective way: 

1. Electromagnetic design 

2. Thermal design 

• The machine’s performance are 
calculated within its electrical and 
thermal limits. 

• Each candidate solution takes 
approx. 10minutes to be computed 
in Motor-CAD software. 

 

Performance Evaluation  

IM Analytical Magnetic Circuit 

Lumped Parameter Thermal Network 



E-Mag Optimization 

• Objectives: 

Max Efficiency (WLTP3) 

Min Active Length 

• Constraints: 

Active Weight (kg) @ 44.6 

Power (kW) @ Base Speed ≥ 200 

Bar Depth (mm) ≥ 8 

Bar Opening Radius (mm) ≥ 0.7 

Bar Corner Radius (mm) ≥ 0.7 

Objectives & Constraints 
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E-Mag Optimization 

• Machine topology: 

‒ 4-pole, 36-slot, 50-bar 

• Geometry: 

‒ Stator outer diameter (mm) = 190 

• Materials 

‒ M235-35A steel (rotor & stator) 

‒ CuAg0.04 (fabricated rotor cage) 

‒ Cu-ETP (die-casted rotor cage) 

• Stator winding: 

‒ Turns / Phase = 12 

‒ Packing factor (%) = 73 

Fixed Parameters 

12 

Radial Geometry Winding pattern 

BH curves Specific Losses 



E-Mag Optimization 

Variable Parameters 
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Parameter  Range Unit 

Active length [100; 175] mm 

Mechanical airgap [0.8; 1.5] mm 

Split ratio [0.5; 0.7] - 

Slot depth ratio [0.3; 0.6] - 

Slot width ratio [0.4; 0.7] - 

Bar opening depth [0.5; 1.2] mm 

Bar depth ratio [0.5; 2.0] - 

Bottom bar width ratio [0.2; 0.9] - 

Top bar width ratio [0.3; 0.6] - 

Bar Opening 
Depth 

Airgap 

Bottom 
Bar Width 

Top Bar 
Width 

Bar  
Depth 

Slot  
Depth 

Stator  
Back Iron 



E-Mag Optimization 

• Multi-core processing used in 
Motor-CAD calculations to build 
the saturation and loss models. 

• One instance of Motor-CAD used 
– although parallelisation possible 
in optiSLang.  

• Analysis completed in three days: 

‒ Generated designs: 400 

‒ Succeeded designs: 357 

‒ Failed designs: 43 

‒ Feasible designs: 0 

Sensitivity Analysis 
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E-Mag Optimization 

Metamodel of Optimal Prognosis (MOP) 
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• The calculated MOPs show the 
optimal subspace for every output 
parameter of interest. 

• The Coefficients of Prognosis, or  
CoPs, assess the quality of each 
MOP. 

• Additional sampling data can be 
generated to improve the quality 
of each MOP.. 

Efficiency @ 17Nm, 5446rpm   

Peak Power @ Base Speed 



E-Mag Optimization 

• Solution in which one can trade-off 
between Efficiency and Volume. 

• Important features: 

‒ Algorithm used: evolutionary 

‒ Generated designs: 10900 

‒ Feasible designs: 7616 

‒ Front designs: 15 

‒ Simulation time: 10 minutes 

• The same optimisation directly 
applied to Motor-CAD would have 
taken more than 100 days! 

Pareto Frontier 
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E-Mag Optimization 

Parallel Coordinate Plot 
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Selected for 
further analysis 



E-Mag Optimization 

• Peak performance are met and the 
efficiency over the WLTP3 drive 
cycle is about 95.05% (motoring). 

Validation in Motor-CAD 
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Thermal Design 

Housing WJ + Shaft Cooling Systems 
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• Same optimization approach used 
to design the cooling system. 

• Variables include flow rates and 
the cooling channels’ dimensions. 

• Continuous performance are met 
with respect to the specification. 



Conclusion  

• The design of a 200kW, 20000rpm copper rotor induction motor for a traction application 
has been presented. 

• The machine was optimized electromagnetically and thermally using Motor-CAD and 
optiSLang software. 

• This combination is an incredibly powerful approach to optimise an electric machine for 
an automotive HEV/EV application. 

• The optimized motor is currently being prototyped and will be tested next year. A scaled 
version will be then integrated on a vehicle powertrain for real performance testing. 
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Rare-Earth Free e-Drives feat. low cost manufacturing 



Appendix 
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• The efficiency over the WLTP3 
drive cycle is evaluated using five 
characteristic operating points. 

• This clustering method allows to 
reduce significantly the simulation 
time in Motor-CAD.  

Efficiency over WLTP3 Drive Cycle 



Appendix 

• Matrix that shows the CoPs of all 
output parameters with respect to 
input parameters: 

• The last column contains the full 
model CoPs of each response. 

 

CoPs Matrix 
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