

High-speed 200 kW Ferrite-assisted SynRel motor for electrical vehicles

André Nasr - IFPEN

Outline

- Introduction
- Design of a 200 kW PM SynRel Motor using ferrite magnets
 - Requirements
 - Stator and rotor design
 - Electromagnetic performances
- Design of a 75 kW motor use of scalability
- Conclusion

NdFeB	Ferrite
Most powerful magnets • Br ~1.2 T • Hcj ~ 2000 kA/m	Low magnetic properties • Br ~ 0.4 T • Hcj ~ 450 kA/m
Surface protection required	No coating needed
High cost (volatile costs and market uncertainty)	Inexpensive (~10 times less)
No particular problems with manufacturing small magnets	High machining costs when making small magnets

- In terms of magnetic performances, NdFeB motors are always superior to ferrite motors. How to reduce the gap ?
- The motor size is an important factor in reducing the gap
 - High machining costs if very small magnets (no more price advantage) \rightarrow Use standard ferrite magnets dimensions to reduce the machining costs

- In terms of magnetic performances, NdFeB motors are always superior to ferrite motors. How to reduce the gap ?
- The motor size is an important factor in reducing the gap
 - High machining costs if very small magnets (no more price advantage) → Use standard ferrite magnets dimensions to reduce the machining costs
 - 3 times less Br → More ferrite magnets → Space ?
- The motor technology Machining Cost \$

 In PM assisted SynRel motors, only
 40 % of the torque is generated from magnets (60 % is reluctance torque).
 Surface-mounted PM motors is not a
 - good technology for ferrite magnets.

Design of a 200 kW PM SynRel Motor using ferrites

Requirements

Parameter	Unit	75 kW	200 kW
Specific Power	kW/kg	> 2.52	> 4.3
Specific Torque	Nm/kg	> 8.2	> 8.2
Active parts weight	kg	< 30	< 47
Maximum speed	rpm	15000 - 18000	
Peak efficiency	%	> 96%	

For the 75 kW motor design, scalability has been used (same stator and rotor geometry as the 200 kW motor)

Design of a 200 kW PM SynRel Motor using ferrites

Stator and rotor design

- 5 pole pairs
- SPP = 2
- 7 magnets per pole
- AG = 0.6 mm

Designation	Material
Lamination	M235-35A
Magnet	Ferrite
Copper wire	G2 H class

Design of a 200 kW PM SynRel Motor using ferrites

Electromagnetics performances

- DC Voltage = 800 V
- Max current = 416 Arms
- Max torque = 405 N.m > 400 N.m
- Peak Power = 226 kW (5000 rpm)
 > 200 kW
- Max power of 91 kW @ 17500 rpm
- Maximum efficiency = 97 %
- Weight = 46.1 kg (Active Part)
- Peak specific torque = 8.8 N.m/kg
- Peak specific power = 4.9 kW/kg

Grant Agreement N° 770143

Design of a 75 kW motor – use of scalability

Stator and rotor design

- $800 \lor 350 \lor$
- Same housing
- 200 mm → 75 mm
- 13 turns \rightarrow 14 turns
- Same rotor and stator geometry
- Same magnets
- Same mechanical parts

Grant Agreement N° 770143

Design of a 75 kW motor – use of scalability

Electromagnetics performances

ReFreeDrive

- Max current = 375 Arms
- Max torque = 158 N.m > 140 N.m
- Peak Power = 92 kW (5300 rpm)
 > 75 kW
- Max power of 51 kW
 @ 12000 rpm
- Maximum efficiency = 95 %
- Weight = 19 kg (Active Part)
- Peak specific torque = 8.3 N.m/kg
- Peak specific power = 4.8 kW/kg

High-speed 200 kW Ferrite-assisted SynRel motor for electrical vehicles

- Comparison between Neodymium and Ferrite magnets :
 - Motors using Neodymium magnets are always superior to Ferrite motors
 - Design aspects should be taken into consideration to reduce the gap in performance
 - Motor size (rotor diameter)
 - Motor technology
- ✓ A 200 kW SynRel motor design using ferrites magnets has been proposed :
 - The elecromagnetic performances meet the requirements (KPI)
 - Thermal and mechanical analysis has been carried out (not presented)
- \checkmark A 75 kW motor design using scalability has been proposed :
 - Same stator and rotor geometry
 - Only modifications are the active length and the number of turns
- ✓ 200 and 75 kW PMa SynRel motors will be prototyped by MAVEL and tested at IFPEN facilities in France

André NASR andre.nasr@ifpen.fr

