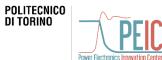


Functionally Integratef E-axle Ready for Mass Market Third GENeration Electric Veichles

Paolo Pescetto

paolo.pescetto@polito.it

Department of Energy "Galileo Ferraris", Politecnico di Torino



Outline

- Introduction
- E-axle architecture
- Definition of E-axle requirements
- Components design
- Conclusions

Introduction to FITGEN EU project

In the last decade, **research interest in the field of road transport** moved from combustion engines to hybrid and electric vehicles

- Reducing emissions in urban areas
- Reducing environmental and acoustic impact
- Improving the life quality of the citizens

This trend was strongly supported by **private and public investments**

- New generation batteries
- Advanced e-motors and PE converters

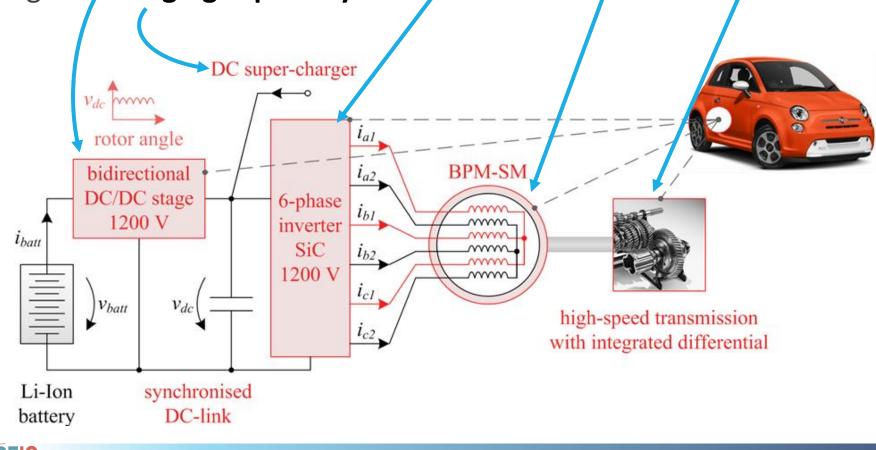
FITGEN European project (H2020 LC-GV-01-2018 call) aims to develop a brand-independent fully electric vehicle architecture

Target

The FITGEN e-axle targets significant advances over the 2018 State of the Art:

1) 40% increase of motor power density

- 6-phase PM e-machine operating above 18.000 rpm
- 2) 50% increase of inverter power density
- SiC power switches
- 3) Affordable and integrated in-built fast charge capability
- 80 kW average, up to 120 kW peak power
- 4) Increase of **electric driving range** to 700-1000 km/day
- including 1h30' of charging time
- 5) High level of industrialization (TRL 7)





E-axle architecture

POLITECNICO DI TORINO

Integration of DC/DC converter, 6-phase inverter, PMSM and transmission, including fast charging capability and OBC

Partners

tecnalia

POLITECNICO DI TORINO Austrian Institute of Technology (coordinator)

Centro Ricerche Fiat

Tecnalia

BRUSA

Politecnico di Torino

ST-I microelectronics

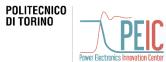
GKN

Vrije Universiteit Brussel



BRUSA

life.augmented



Definition of the e-axle

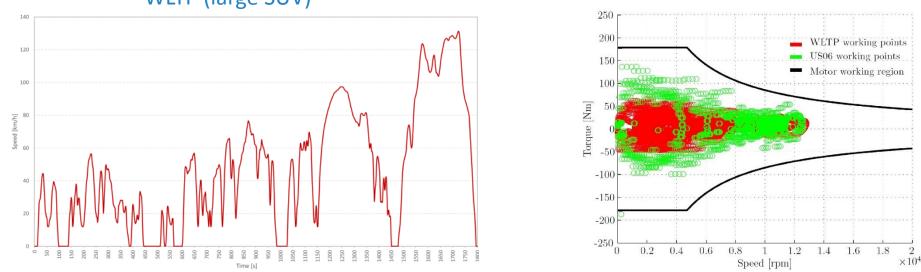
Reference platform

The FITGEN e-axle is designed to be **brand independent**

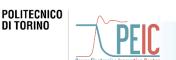
Reference vehicle platforms:

- A-segment 2 wheel driving BEV
- Small SUV 4 wheel driving PHEV (combustion engine in the front, e-axle in the rear)
- Large SUV 4 wheel driving BEV

A full scale prototype e-axle will be integrated and tested on an A-segment pure EV mule in rear axle configuration



End-user requirements: speed profiles


The end user requirements were defined based on a set of speed profiles

- Homologation procedures (WLTP and US06)
- Driving cycles (experimental)
- Constant speed highway driving (target range: 700 km with three fast charges)

WLTP (large SUV)

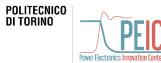
WLTP: Worldwide harmonized Light vehicles Test Procedure

End-user requirements: reduction ratio

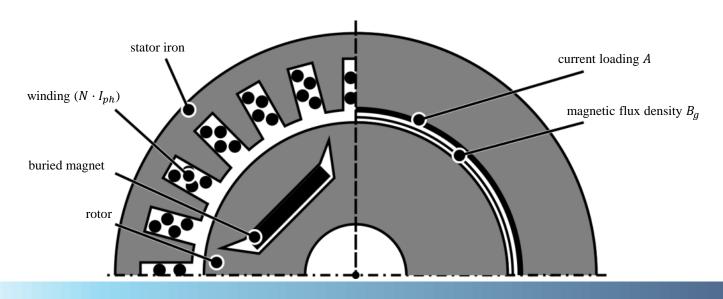
Two reduction ratios for the single speed transmission unit were considered (1:9.6 and 1:12.5)

The most demanding condition for the Large SUV platform, at a maximum torque and corner speed

- 240 Nm @ 3800 rpm for the 1:9.6 ratio
- 180 Nm @ 4800 rpm for the 1:12.5 ratio


The FITGEN preliminary design favors the **1:12.5 solution**, to allow the electric motor operation above 18 krpm

Components design


Hybrid synchronous motor

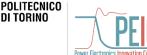
Buried Permanent Magnet Synchronous Machine (**BPM-SM**)

Optimal design criteria:

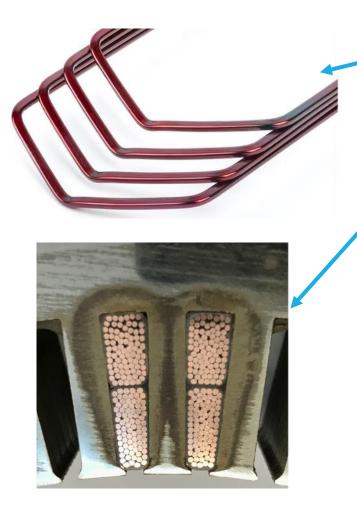
- Target rotational speed
- Losses evaluation
- Cooling system (overload)
- Winding technology

Winding technology

Considering the **frequency dependency of the copper losses**:


 $P_{cu} \propto I_{ph}^2 R_{ph,AC}(f_e)$

where $R_{ph,AC}$ is the frequency dependent AC-phase resistance


Two types of winding technology are analyzed:

- Hair Pin Windings (HPW)
- Form Litz Wire (FLW)

Winding technology

HPW is formed by rectangular solid copper conductors

- Good slot fill factor
- Significant AC losses due to skin and proximity effects
- **FLW** consists of stranded conductors that are inserted into the stator slots
 - Slot fill factor is worse than HPW
 - Greatly reduced skin and proximity effects

The FITGEN rotational speed (18 krpm) leads to very high electrical frequency (900 Hz)

Therefore, FLW was chosen

Single speed transmission

Mechanical transmission designed by GKN

Integration of high efficiency reduction unit, the differential and the e-motor

Electrically driven disconnect clutch (for hybrid vehicles)

Oil cooling, investigating the possibility of employing transmission cooling lubricating oil also to cool the e-drive

Main contributors:

Functionally integrated with BPM-SM, DC/DC converter the on-board charger

Three-phase and six-phase scenarios are considered

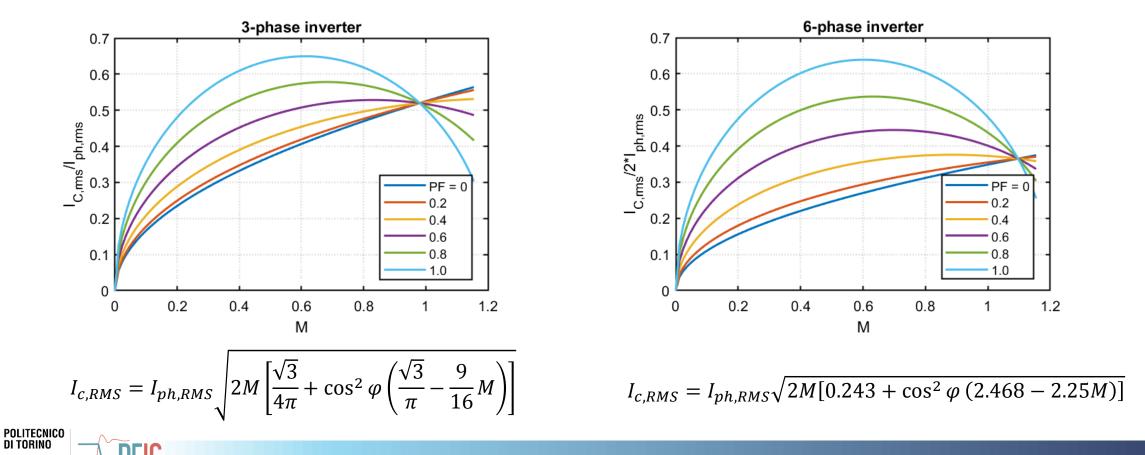
Inverter voltage and current size related to the size of the e-motor:

$$VA_{SOA} = (k_{v,SOA}k_{A,SOA}k_{motor,SOA})P_{max}$$

Where

$$k_{V,SOA} = \frac{V_{SOA}}{\sqrt{3}\hat{V}_{ph,max}}$$
; $k_{A,SOA} = \frac{I_{SOA}}{\hat{I}_{ph,max}}$; $k_{motor,SOA} = \frac{1}{\eta\cos\varphi}$

- The adoption of the DC/DC converter reduces the voltage factor $k_{V,SOA}$
- The adoption of the 6-phase configuration can (slightly) increase the e-motor efficiency and so the motor factor $k_{motor,SOA}$



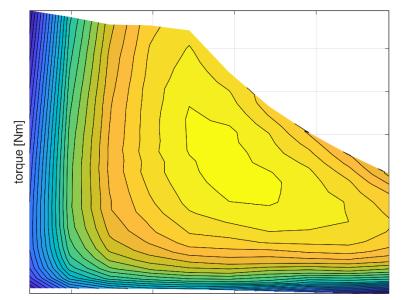
SiC inverter: DC-link

Power Electronics Innovation I

6-phase configuration helps reducing the size of the DC-link capacitor especially in case of low power factor

SiC inverter: control strategy

High **non-linearities** caused by the magnetic saturation effect


Electrical **parameters variation** due to machine ageing, manufacture tolerances and temperature dependency

Most common solution: dq current control

Sliding Mode Control will be also considered

Optimal current set-point generation algorithm, including Field Weakening

Main contributor:

speed [rpm]

POLITECNICO

Battery charging: DC/DC

The high voltage **DC/DC-converter** steps-up the battery voltage from a nominal 320-420 V, creating a controlled DC-link with a maximum rating up to 750 V

- Motor and inverter current rating reduction
 (450 to 200 A rms if 3-phase, 225 to 100 A rms if 6-phase)
- Compatibility with high voltage DC-chargers up to 750 V (with flexibility to lower rated values)
- Smart-use of the DC-link voltage

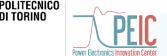
The Smart DC-link control enables instantaneous DC voltage optimisation in traction, minimizing the switching losses and possibly reducing the number of commutations by synchronizing the DC-link with the motor phase angle

Battery charging: OBC

A low-to-mid power **AC/DC on-board charger** is also foreseen, integrated into the powertrain

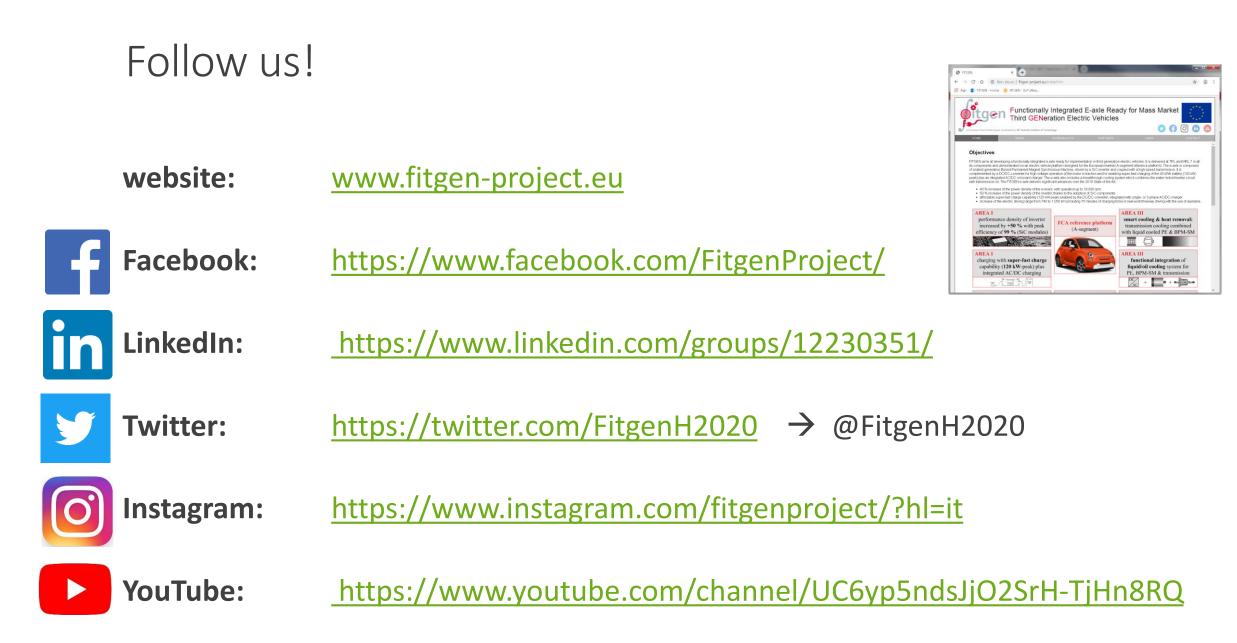
Three options under investigation:

- Single-phase charging with EMI filter (no PFC)
- Single-phase charging with EMI filter and PFC
- 3-phase charging with EMI filter

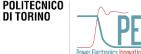

The first option uses the inverter switches and the e-machine stator phases as coupled inductances to realize an interleaved PFC rectifier

Main contributor:

POLITECNICO DI TORINO



Conclusions


- FITGEN H2020 project aims at developing a functionally integrated e-axle, demonstrated on an A-segment BEV platform
- BPM-SM: maximum speed of 20 22 krpm is targeted (increased power density), favouring a transmission reduction ratio of 1:12.5 and leading to T_{max} =180 Nm and n_b =4.8 krpm
- FLW against HPW are preferred for the stator design
- A 6-phase configuration of the SiC-inverter is selected, improving efficiency, combined with a DC/DC and smart DC-link to enable fast charge and optimise voltage level in traction
- The system is complemented with an **on-board charger**

Thanks for your attention

paolo.pescetto@polito.it

