

ReFreeDrive

Rare-Earth Free e-Drives feat. low cost manufacturing

This document contains proprietary information of Motor Design Ltd.

Such proprietary information may not be used, reproduced, or disclosed to any other parties for any other purpose without the expressed written permission of Motor Design Ltd. © Motor Design Ltd 2016 All Rights Reserved.

www.refreedrive.eu

Adoption of the Induction Motor With Copper Rotor for E-Mobility

Nicolas Rivière, Research Engineer

26 September 2018, Pordenone , Italy

Content

- I. Introduction
- II. Specifications
- III. Work Package structure
- IV. Design procedure
- V. Preliminary design analysis
- VI. Optimisation
- VII. Conclusion and outlooks

Introduction

ReFreeDrive goals and actions

Objectives and actions

Main goals

Rotor cage induction machine

- Proven technology in industry with the Tesla model S
- Data from teardown analysis and used as a reference
- Copper preferred to aluminium for its conductivity, thermal dissipation, rigidity and strength, recyclability...

Induction machine (IM) vs PM-machine

Despite lower performances as a whole, IMs still have attractive features for EV applications compared to their counterpart:

- Simplicity, robustness, fault tolerant capability
- Efficiency can be higher over a full drive cycle
- Rare-earth PM-free machine
- Can lead to cost savings

Property	Copper Rotor Induction Motor	Permanent Magnet Motor
Efficiency	88%	92%
Stator Copper Loss	940 W	780 W
Rotor Loss	230 W	0 W
Stray Load Loss	140 W	0 W
Iron Loss	180 W	100 W
Total Loss	1490 W	880 W
Coolant Temperature	105°C	105°C
Coolant Flow Rate	2.4 gallons/min	2.4 gallons/min
Maximum Winding Temp	156°C	156°C

10

solution and a better strength at higher speeds

More flexibility for bar geometry and number

Mechanical rigidity for a cost effective noise

- Lower efficiency than their fabricated counterparts but can be improved with a post heat treatment and/or a lamination coating
- High melting temperature of copper: requires more expensive dies and can cause inter-bar currents and short-circuited laminations

Fabricated rotor

- Higher efficiency than their die-casted counterparts
- End-ring assembly: can be expensive, involves stress concentrations at braze joints and reduces electrical conductivity

Hairpin winding

Advantages

- Repeatable manufacturing
- Well suited for distributed windings
- Robust construction at ends connections
- Heat management can be improved
- Short end-windings overhangs
- High slot fill factor

Drawbacks

- Limited number of conductors
- AC losses at high speed

High speed machine

Motivations

- Power density can be increased: Power = Torque × Speed
- Advances in power electronics and power controls
- Development of high strength and low loss materials

Limitations

- Speed dependant losses (iron losses, AC copper losses, friction losses, windage losses...)
- Gearbox and bearings (availability, cost, dimensions...)

Requirement

• Proper electromagnetic, mechanical and thermal design of the machine through multi-physic analysis

Advanced cooling system: oil spray

- Direct cooling (jet impingement) that improves heat transfers at end-winding locations
- Implemented in Motor-CAD software through correlations established from tests and experiments
- Independent nozzles can be placed on the endcaps, the housing or the shaft
- Flow can be supplied from external data or coupled with a shaft and/or a housing jacket cooling system

Specifications

Boundary Conditions & Key Performance Indicators

Boundary conditions

Machine topology

- Copper rotor IM
- Inner Rotor (IR) vs Outer Rotor (OR)

Power levels

- High power: 200kW (peak)
- Medium power: 80kW (peak)

Copper rotor manufacturing

- Die-casted
- Fabricated
- → Medium power motor scaled from the high power motor
- →Specified volume includes the motor together with its cooling system

Specification	Unit	Medium power	High power		
Nominal voltage	Vdc	From scalability	720		
Working voltage	Vdc	250-450	500-840		
Nominal power	kW	45	120		
Peak power	kW	80	200		
Nominal speed	rpm	From scalability	> 6000		
Maximum speed	rpm	From scalability	1000018000		
Peak torque	N.m	From scalability	> 280		
Nominal current	Arms	500	500		
Peak current	Arms	550	550		
Volume (max)	mm	200h×3 <mark>00</mark> L×300W	350 <mark>h×</mark> 330L×550W		
Cooling systems	-	Housin <mark>g j</mark> acket, sha	ft co <mark>oli</mark> ng, oil spray		
Coolant type	-	Water/glyco	ol, ATF fluid		
Insulation level	-	Clas	is H		
IP level	-	> IF	255		
Weight	kg	< 20	< 60		

Key Performance Indicators (KPI)

- Main performance indicators for an electric motor
- Defined according to APEEM 2022¹ goals and from state of the art
- Adapted for each targeted power: medium and high power

KPI	Unit	APEEM 2022 Goal	Medium power	High power
Specific power	kW/kg	1.6	> 1.6	> 2.0
Specific torque	N.m/kg	-	> 2.0	> 3.0
Power density	kW/L	5.7	> 5.4	<mark>> 6</mark> .0
Torque density	N.m/L	-	> 3.0	> 5.0
Peak efficiency	%	> 94	> 94	> 94

¹APEEM: Advanced Power Electronics and Electric Motors (program, DOE)

DOE: US Department of Energy

Work Package 3 (WP3)

Structure, partners & planning

WP3 in ReFreeDrive project

WP structure

Partners involved*

MDL: WP3 leader, motor design and analysis									
UAQ: electromagnetic 3D FEA									
CSM: electric steel definition									
BREU: die-cast copper rotor technology									
AUR: fabricated copper rotor technology									
TCM: hairpin winding									
CID: NVH analysis, 3D manufacture drawings									
JLR, ECI, PRI: advise on manufacturability issues									

*MDL: Motor Design Limited; UAQ: University of l'Aquila; CSM: Centro Sviluppo Materiali; BREU: Breuckmann; AUR: Aurubis; *TCM: Tecnomatik; CID: Cidaut; JLR: Jaguar and Land Rover; ECI: European Copper Institute; PRI: Privé

Planning WP3

2018 2019 2020 2017 10 4 5 6 11 12 1 2 3 4 5 6 7 10 11 12 3 4 5 8 9 11 12 1 2 3 10 1 2 7 8 M1 M2 M19 M20 M21 M22 M23 M24 M25 M26 M27 M28 M30 M31 M32 M33 M3

	ReFreeDrive Project Milestones		(In (Elec	teraction . steel cha	vith WP4 racterization)	ļ	Int (Sy	eraction with WP4 ncRel Stator Design)				3	4 5 6				\$
	WP3 IM Design			1							Interaction	on with WF	'5					
	WP4 SynRel Motor Design									l	(PE	cooling) on with WF	25					
	WP5 eDrive Design										(PE ir	ntegration)						
Task 3.1	Preliminary CR-IM motor design		M4		M7						I							
	Evaluation of different stator configurations																	
3.1.1	Evaluation of inner and outer rotor topologies																	
	Evaluation of cooling systems																	
	Windings												1.	Boundary Co	nditions			
3.1.2	Electrical steels			1				It.	erations between EM	and			2 .	IM Design				
	Copper Alloys						M13		Mech Design				3.	SvncRel Desig	zn			
Task 3.2	CR-IM electro-magnetic design								1				4.	PE Design	,			
	CR-IM Inner Rotor Track 1 Optimisation												5.	Integration D	esign			
321	CR-IM Outer Rotor Track 2 Optimisation												6.	Prototypes N	lanufactu	red		
5.2.1	CR-IM Inner RotorTrack 1 Evaluation												7.	Technology V	alidation			
	CR-IM Outer Rotor Track 2 Evaluation									M18								
Task 3.3	CR-IM thermal analysis																	
331	CR-IM Inner Rotor Track 1 Thermal Design																	
	CR-IM Outer Rotor Track 2 Thermal Design											M21					 	
Task 3.4	CR-IM Full Design									ĺ								
	CR-IM Inner Rotor Track 1 Full Design																	
3.4.1	CR-IM Outer Rotor Track 2 Full Design								ļ									
	CR-IM Inner Rotor Track 1 Full Design Evaluation																	
	CR-IM Outer Rotor Track 2 Full Design Evaluation																 	
	Deliverables	Due d	ate															
	D3.1	M7												Preliminary C	R-IM design		 ļ	
	D3.2	 M13	3)						EM CR-IM des	ign		 	
	D3.3	M18	8										<u> </u>	Therm CR-IM	design		 	
	D3.4	M2:	1										Z	Full CR-IM de	Jign		 	

Design procedure

From project definitions to integration & validation

www.motor-design.com

Motor-CAD software 🥘

- IM electromagnetic design analysis in Motor-CAD based on a hybrid 2D Finite Element Analysis (FEA) method and analytical magnetic equivalent circuit
- Operating point determined through a MTPA strategy:

Maximum torque per amp

minimise $I_s = \sqrt{I_d^2 + I_q^2}$, subject to $T_{shaft} - T_{demand} = 0$ and $V_{lim} \ge 2\pi f \sqrt{\psi_d^2 + \psi_q^2}$

 Thermal design analysis based on a lumped analytical thermal network

Preliminary design analysis

Choices, material selection & initial sizing

Reference design: TESLA 60S

- Copper rotor IM
- Water cooled stator and rotor
- Potted end-windings

Parameters	Unit	Value
Stator slots	-	60
Pole pairs	-	2
Rotor bars	-	74
Stator diameter	mm	254
Stator bore	mm	157
Airgap	mm	0.5
Active length	mm	152
Machine length	mm	280
Parallel paths	-	2
Tur <mark>ns</mark> /coil	-	1 or 2
Coils/phase	-	12
DC voltage	V	366
RMS current	Α	900
Maximum speed	rpm	14700

Geometry

Best candidates for IR-IM and OR-IM

Daramotors	Unit	Value				
Falameters	Unit	IR-IM	OR-IM			
Stator slots	-	36	36			
Pole pairs	-	2	3			
Rotor bars	-	50	50			
Stator OD	mm	190	179			
Rotor OD	mm	110	254			
Airgap	mm	1	0.5			
Active length	mm	150	90			
Active weight	kg	~ 36	~ 48			

Winding

- Hairpin winding technology with rectangular wire size
- Four conductors/slot based on existing technology
- Double coil layer winding and parallel slot sided

llait	Va	lue	Slot	
Unit	IR-IM	OR-IM	IR-IM	
-	1	1		Radial pattern
-	2	2		IR-IM
_	1	1	1	
%	~ 73	~ 73	3.5mm	
_	24	24		
slot	9	5	5mm	
_	0.959	0.933		
· · ·	Unit - - % - slot -	Unit Va IR-IM - 1 - 2 - 1 % ~73 - 24 slot 9 - 0.959	ValueIR-IMOR-IM-11-22-11 $\%$ \sim 73 \sim 73-2424slot95-0.9590.933	Value IR-IM OR-IM - 1 1 - 2 2 - 1 1 % ~73 ~73 - 24 24 Slot 9 5 - 0.959 0.933

Cooling systems (IR-IM only)

- Shaft cooling required to meet KPIs
- Housing and shaft cooling systems are parallel connected
- Coolant is oil (ATF fluid) or water-glycol mixture (EWG 50/50)

Da	ramators	Unit	Val	ue
Fa	lameters	Unit	EWG	ATF
	Flow rate	L/min	2	3
Shaft	Inlet temp.	С	65	65
	Inner diameter	L/min 2 C 65 eter mm - L/min 10	5	
	Flow rate	L/min	10	5
Housing	Inlet temp.	С	65	65
	Outer diameter	mm	230	230

Materials: electrical steel

Magnetic characterization (RINA-CSM)

- Four Non-Grain Oriented materials:
 - ✓ NO-020HS (fully finished, 0.20mm thick)
 ✓ NO-030-15 (fully finished, 0.30mm thick)
 ✓ HP290-50K (semi-finished, 0.50mm thick)
 ✓ M235-35A (fully finished, 0.35mm thick)
- Frequencies: 50-400-800-1000Hz
- Measurements: BH curves and losses

Material selection

- 50Hz data give the best peak torque
- Small impact on the motor efficiency
- M235-35A has the best performance to cost ratio for both IR-IM and OR-IM
- ightarrow Mechanical characterisations on-going

Materials: copper alloys

Fabricated rotor: CuAg0.04 alloy

- Commonly used material in IM
- Good mechanical strength (T < 200C)
- End-rings can be soldered or welded
 → trade-off cost/rotor strength

Die-casted rotor: Cu-ETP alloy

• Best electrical conductivity in the list of materials proposed (BREU)

Die-casted vs Fabricated

- Small differences observed in efficiency maps due to low variation in the referred rotor resistance
- 3D mechanical stress analysis required to select the best configuration

Efficiency maps

- AC losses, windage losses and friction losses not considered
- Peak efficiency of 96%
 for both IR-IM and OR IM technologies
- Efficiency maps show the peak performance for a given maximum current
- Peak torque is about 375N.m and 356N.m for IR-IM and OR-IM, respectively

 \rightarrow AC losses, windage losses and friction losses not considered

Thermal envelope (IR-IM only)

• Maximum thermally constrained operational envelope of the motor

• Maximum winding and rotor cage temperatures set to 180C

Rotor stress analysis

- **Speed** and **temperature** are sources of stress in the rotor
- Thermal stress comes from different material expansion rates
- Rotational stress is caused by centrifugal forces
- IR-IM is strongly impacted by thermal stress but shows good safety factors
- **OR-IM** is more affected by centrifugal stress, resulting in lower safety factors

Modal analysis (IR-IM only)

When spinning the rotor is subjected to **unbalance forces** and **moments**

Resonance occurs when the excitation frequency equals the rotor natural frequency

Parametric analysis

- Shaft length: 210...250mm
- Bearing OD: 15...30mm
- Bearing stiffness: 1.10^{8..12}N/m

Scalability

- Relies on the same radial dimensions
- The power supply is adapted based on the available current and voltage levels

Deremeters	llait	Value (IR-IM)				
Parameters	Unit	200kW	80kW			
Peak power	kW	> 200	> 80			
Continuous power	kW	> 120	> 60			
Peak torque	N.m	375	192			
Continuous torque	N.m	> 130	> 125			
Peak efficiency	%	96	96			
DC voltage	V	720	350			
RMS Line current	А	500	275			
Maximum speed	rpm	18000	13000			

Design optimisation

Towards a better motor

RFD_call_MCAD2.py - C:/0_MDL_PROJECTS/ReFreeDrive/Opti/scripts - Motor-CAD Solve - Python 2

Paramete

14

150

Input slots

Bar Depth Ratio

Bar Depth T *

Copper_Height *

Copper_Slot_Fill

Copper_Width *

Motor_Length *

Standard slots

Rotor Lam Length

Show additional options

Bar_Opening_Depth_T * 1

Bar_Top_Width_Ratio

.

Motor-CAD & optiSlang

Coupling via customised Python scripts and the ActiveX connection

Workflow	/
----------	---

				Se	ens	iti	vit	ty a	n	aly	'S	is
						💐 Se	ensi_B4	- Sensitivit	y			
1	ensi_B4	- Sensitivity				Para	ameter	Start des	igns	Criter	ria	Dynar
Pa	rameter	Start designs	Criteria Parame	Dynam eter type	Reference		Îd	Feasible	Dup	licates	S	tatus
11	Copper	_Width	Depend	ent	5.07256	1	0.1	true			Cure	coodor
12	Stator_	Bore	Depend	ent	115.9	11	0.1	uue			Suc	ceeded
13	Rotor_L	am_Length	Depend	ent	137.5	2	0.2	true			Suc	ceedeo
14	Slot_Wi	idth_Ratio	Optimiz	ation	0.58		0.0				C	
15	Stator_	Lam_Dia	Optimiz	ation	190	3	0.3	true			Suc	ceedeo
16	Bar_Op	ening_Depth_T	Optimiz	ation	1	4	0.4	true			Suc	ceedeo
17	Stator_I	Lam_Length	Optimiz	ation	137.5	-	0.5	A			c	
18	Tooth_1	lip_Angle	Optimiz	ation	0	5	0.5	true			Suc	ceedeo
19	Tooth_1	lip_Depth	Optimiz	ation	1	2						

Setup

Fixed parameters: max. dimensions, cooling system, slot/pole/bar combination, winding, materials, drive settings, max. temperatures

Variables	Bounds	Goal(s) and constraint(s
Slot width/Slot pitch	[0.45; 0.75]	
Active length	[100; 150] mm	$\max(T_{peak}@LS)$
Bar opening depth	[0.5; 2] mm	$\int T_{cont} @6krpm > 130N.m$
Stator ID/Stator OD	[0.5; 0.75]	$P_{peak} @ MP > 200 kW$
Slot depth/(Slot depth + Stator yoke)	[0.25; 0.7]	$(P_{cont} \otimes MP > 120 kW)$
Bar depth/(Bar depth + Rotor Yoke)	[0.3; 0.6]	Scenario 2 $\begin{cases} \min(L) \\ T_{peak}@LS > 280N.m \\ P_{peak}@MP > 200kW \\ P_{peak}@MP > 120kW \end{cases}$
Slot opening width/Slot width	[0.2; 0.8]	
Bottom bar width/Bar pitch	[0.2; 0.6]	
Top bar width/Bar pitch	[0.3; 0.65]	$\begin{bmatrix} P_{cont} @ MP > 120KW \\ T = Torque: L = Length: LS = Low Speed: MP = Max Power$

Results: scenario 1

- Better peak and continuous performance over the full speed range
- 96% peak efficiency in a larger area
- Length maximised to its max bounds
- Higher split ratio
- Bar cross sectional area increased

Results: scenario 2

- Length reduced by 23% compared to the reference design
- 96% peak efficiency in a large area
- Larger bar area and higher split ratio
- Continuous performance at low speed sufficient? → Pareto front

Reference

Optimised

www.motor-design.com

Objective Pareto Plot

Pareto front (1)

Scenario 2

 $\begin{cases} \min(L) \\ T_{peak}@LS > 280N.m \\ P_{peak}@MP > 200kW \\ P_{cont}@MP > 120kW \end{cases}$

www.motor-design.com

Pareto front (2)

- The longer the machine the better the thermal envelope
- Different tendency for the peak operation

www.motor-design.com

Conclusion

Main results & Outlooks

Conclusion

Main results (Task 3.1)

- IR-IM and OR-IM solutions are potential structures to be used for ReFreeDrive application and eMobility overall
- Mechanical stress calculations showed poor safety factors for OR-IM solution that needs for refinements
- Materials for the rotor bars and the rotor and stator cores were selected according to the best performance to cost ratio
- IR-IM was optimised to reduce the cost while meeting the power and torque requirements based on ReFreeDrive boundary conditions

Outlooks (Task 3.2)

- Sensitivity analysis, optimisation and thermal analysis on the OR-IM design
- 3D mechanical stress FEA to be performed on the fabricated copper rotor IM
- Parameters from the cooling system to be included in the optimisation for better efficiency and continuous performance
- Solution with spray cooling to be investigated
- Scalability principles to be applied to the optimal designs

Thank you for your attention!

Motor Design Software by Motor Design Engineers

Motor Design Ltd

5 Edison Court | Wrexham Technology Park | Wrexham | LL13 7YT | UK Tel. +44 (0)1691 623305