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Introduction
ReFreeDrive goals and actions
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Mass 
production

Low 
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Increased 
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Objectives and actions
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Objectives and actions

Copper rotor induction motor
Die-casted or fabricated rotor

Actions

Main goals

Mass 
production

Low 
costs

Increased 
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Objectives and actions
Main goals

Material selection
Manufacturing processes

Design optimisation

Actions

Mass 
production

Low 
costs

Increased 
performances
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Objectives and actions
Main goals

Mass 
production

Low 
costs

Increased 
performances

Material selection
Inner Rotor vs Outer Rotor
Hairpin winding technology

Increase speed
Innovative cooling system

Design optimization

Actions
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• Proven technology in industry with the 
Tesla model S

• Data from teardown analysis and used 
as a reference

• Copper preferred to aluminium for its 
conductivity, thermal dissipation, 
rigidity and strength, recyclability…

Rotor cage induction machine

http://auto.naver.com/car/image.nhn?yearsId=29834
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Induction machine (IM) vs PM-machine

Property

Despite lower performances as a whole, IMs still have attractive 
features for EV applications compared to their counterpart:

• Simplicity, robustness, fault tolerant capability

• Efficiency can be higher over a full drive cycle

• Rare-earth PM-free machine

• Can lead to cost savings
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Die-casted vs fabricated copper rotor

Higher efficiency than their die-casted counterparts

End-ring assembly: can be expensive, involves 
stress concentrations at braze joints and reduces 
electrical conductivity

Die-casted rotor

Fabricated rotor

Mechanical rigidity for a cost effective noise 
solution and a better strength at higher speeds

More flexibility for bar geometry and number

Lower efficiency than their fabricated counterparts but 
can be improved with a post heat treatment and/or 
a lamination coating

High melting temperature of copper: requires more 
expensive dies and can cause inter-bar currents and   
short-circuited laminations
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• Repeatable manufacturing

• Well suited for distributed windings

• Robust construction at ends connections

• Heat management can be improved

• Short end-windings overhangs

• High slot fill factor

Advantages

Drawbacks

• Limited number of conductors

• AC losses at high speed

Hairpin winding
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Power  =  Torque × Speed• Power density can be increased:

• Advances in power electronics and power controls

• Development of high strength and low loss materials

Motivations

Limitations

High speed machine

• Speed dependant losses (iron losses, AC copper losses, 
friction losses, windage losses…) 

• Gearbox and bearings (availability, cost, dimensions…)

Requirement

• Proper electromagnetic, mechanical and thermal 
design of the machine through multi-physic analysis
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Advanced cooling system: oil spray

• Direct cooling (jet impingement) that improves heat 
transfers at end-winding locations 

• Implemented in Motor-CAD software through 
correlations established from tests and experiments

• Independent nozzles can be placed on the endcaps, 
the housing or the shaft

• Flow can be supplied from external data or coupled 
with a shaft and/or a housing jacket cooling system
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Specifications
Boundary Conditions & Key Performance Indicators
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Boundary conditions Specification Unit Medium power High power

Nominal voltage Vdc From scalability 720

Working voltage Vdc 250-450 500-840

Nominal power kW 45 120

Peak power kW 80 200

Nominal speed rpm From scalability > 6000

Maximum speed rpm From scalability 10000..18000

Peak torque N.m From scalability > 280

Nominal current Arms 500 500

Peak current Arms 550 550

Volume (max) mm 200h×300L×300W 350h×330L×550W

Cooling systems - Housing jacket, shaft cooling, oil spray

Coolant type - Water/glycol, ATF fluid

Insulation level - Class H

IP level - > IP55

Weight kg < 20 < 60

Machine topology
• Copper rotor IM
• Inner Rotor (IR) vs Outer Rotor (OR)

Power levels
• High power: 200kW (peak)
• Medium power: 80kW (peak)

Copper rotor manufacturing
• Die-casted
• Fabricated

→Medium power motor scaled from 
the high power motor

→Specified volume includes the motor  
together with its cooling system
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Key Performance Indicators (KPI)

• Main performance indicators for an electric 
motor

• Defined according to APEEM 20221 goals and 
from state of the art

• Adapted for each targeted power: medium 
and high power

KPI Unit APEEM 2022 Goal Medium power High power

Specific power kW/kg 1.6 > 1.6 > 2.0

Specific torque N.m/kg - > 2.0 > 3.0

Power density kW/L 5.7 > 5.4 > 6.0

Torque density N.m/L - > 3.0 > 5.0

Peak efficiency % > 94 > 94 > 94

1APEEM: Advanced Power Electronics and Electric Motors (program, DOE)

DOE: US Department of Energy
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Work Package 3 (WP3)
Structure, partners & planning
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WP3 in ReFreeDrive project

MDL: WP3 leader, motor design and analysis

UAQ: electromagnetic 3D FEA

CSM: electric steel definition

BREU: die-cast copper rotor technology

AUR: fabricated copper rotor technology

TCM: hairpin winding

CID: NVH analysis, 3D manufacture drawings

JLR, ECI, PRI: advise on manufacturability issues

Partners involved*WP structure

*MDL: Motor Design Limited; UAQ: University of l’Aquila; CSM: Centro Sviluppo Materiali; BREU: Breuckmann; AUR: Aurubis; 

*TCM: Tecnomatik; CID: Cidaut; JLR: Jaguar and Land Rover; ECI: European Copper Institute; PRI: Privé
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Planning WP3
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Design procedure
From project definitions to integration & validation 
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Motor-CAD software

1• IM electromagnetic design analysis in Motor-CAD 
based on a hybrid 2D Finite Element Analysis (FEA) 
method and analytical magnetic equivalent circuit

• Operating point determined 
through a MTPA strategy:

• Thermal design analysis 
based on a lumped 
analytical thermal network
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Preliminary design 
analysis
Choices, material selection & initial sizing
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Reference design: TESLA 60S Parameters Unit Value

Stator slots - 60

Pole pairs - 2

Rotor bars - 74

Stator diameter mm 254

Stator bore mm 157

Airgap mm 0.5

Active length mm 152

Machine length mm 280

Parallel paths - 2

Turns/coil - 1 or 2

Coils/phase - 12

DC voltage V 366

RMS current A 900

Maximum speed rpm 14700

• Copper rotor IM

• Water cooled stator and rotor

• Potted end-windings
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Geometry

Parameters Unit 
Value

IR-IM OR-IM

Stator slots - 36 36

Pole pairs - 2 3

Rotor bars - 50 50

Stator OD mm 190 179

Rotor OD mm 110 254

Airgap mm 1 0.5

Active length mm 150 90

Active weight kg ~ 36 ~ 48

Best candidates for IR-IM and OR-IM



27

Winding

Radial pattern
IR-IM

• Hairpin winding technology with rectangular wire size

• Four conductors/slot based on existing technology

• Double coil layer winding and parallel slot sided

Parameters Unit 
Value

IR-IM OR-IM

Parallel paths - 1 1

Turns per coil - 2 2

Strand in hand - 1 1

Slot fill factor % ~ 73 ~ 73

Turns/phase (in serie) - 24 24

Coil pitch slot 9 5

Winding factor (𝒌𝒘𝟏) - 0.959 0.933

5mm

3.5mm

Slot
IR-IM
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Cooling systems (IR-IM only)

• Shaft cooling required to meet KPIs

• Housing and shaft cooling systems are 
parallel connected

• Coolant is oil (ATF fluid) or water-glycol 
mixture (EWG 50/50)

Parameters Unit 
Value

EWG ATF

Shaft

Flow rate L/min 2 3

Inlet temp. C 65 65

Inner diameter mm - 5

Housing

Flow rate L/min 10 5

Inlet temp. C 65 65

Outer diameter mm 230 230
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Materials: electrical steel

Magnetic characterization (RINA-CSM)
• Four Non-Grain Oriented materials:
✓NO-020HS (fully finished, 0.20mm thick)

✓NO-030-15 (fully finished, 0.30mm thick)

✓HP290-50K (semi-finished, 0.50mm thick)

✓M235-35A (fully finished, 0.35mm thick)

• Frequencies: 50-400-800-1000Hz

• Measurements: BH curves and losses

Material selection
• 50Hz data give the best peak torque

• Small impact on the motor efficiency

• M235-35A has the best performance 
to cost ratio for both IR-IM and OR-IM

→Mechanical characterisations on-going
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Materials: copper alloys

Fabricated rotor: CuAg0.04 alloy
• Commonly used material in IM

• Good mechanical strength (T < 200C)

• End-rings can be soldered or welded

→ trade-off cost/rotor strength 

Die-casted rotor: Cu-ETP alloy
• Best electrical conductivity in the list 

of materials proposed (BREU)

Die-casted vs Fabricated
• Small differences observed in 

efficiency maps due to low variation in 
the referred rotor resistance

• 3D mechanical stress analysis required 
to select the best configuration

Mechanical characterizations (AUR)

Te
n

si
le

 s
tr

en
gt

h
 [

M
Pa

]

Temperature [C]

Rotor 
type

Material 
type

Motor 
part

Resistivity 
[×10-8𝛀/𝐦]

Die-casted Cu-ETP Bars, end-rings 1.8349

Fabricated

CuAg0.04 Bars, end-rings 1.7020

SAC305 Filler 10.4

BercoweldK5 Filler [5; 6.67]
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Efficiency maps

→ AC losses, windage losses and friction losses not considered

• AC losses, windage 
losses and friction 
losses not considered

• Peak efficiency of 96% 
for both IR-IM and OR-
IM technologies

• Efficiency maps show 
the peak performance 
for a given maximum 
current

• Peak torque is about 
375N.m and 356N.m 
for IR-IM and OR-IM, 
respectively

IR-IM

IR-IM
Torque-Speed 

map

OR-IM
Torque-Speed 

map

IR-IM
Power-Speed 
map

OR-IM
Power-Speed 
map
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• Maximum thermally constrained operational envelope of the motor

• Maximum winding and rotor cage temperatures set to 180C

Thermal envelope (IR-IM only)



33

OR-IM

Rotor stress analysis
Material

Density
[kg/m3] 

Elastic modulus
[GPa]

Poisson ratio 
[]

Yield strength
[MPa]

CTE*

[10-5/C] 

Copper 8933 110 0.34 280 1.8

Steel 7650 190 0.3 460 1.19

*Thermal expansion coefficient

IR-IM

180C 

22C  

Rotor

• Speed and temperature are 
sources of stress in the rotor

• Thermal stress comes from 
different material expansion 
rates

• Rotational stress is caused 
by centrifugal forces

• IR-IM is strongly impacted by 
thermal stress but shows 
good safety factors

• OR-IM is more affected by 
centrifugal stress, resulting in 
lower safety factors

8krpm 8krpm

20krpm 15krpm

20krpm 15krpm180C 
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When spinning the rotor is subjected 
to unbalance forces and moments

Resonance occurs when the excitation 
frequency equals the rotor natural 
frequency 

Parametric analysis
• Shaft length: 210…250mm

• Bearing OD: 15…30mm

• Bearing stiffness: 1.108..12N/m

Modal analysis (IR-IM only)

Real 
model Simplified 

model

1
1

0
m

m

150mm

Bearing stiffness First critical speed Stiff bearing required

Bearing diameter First critical speed Bearing cost? Max torque? 

Shaft Length First critical speed End windings dimensions?
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• Relies on the same radial dimensions

• The power supply is adapted based on 
the available current and voltage levels

Scalability

Parameters Unit 
Value (IR-IM)

200kW 80kW

Peak power kW > 200 > 80 

Continuous power kW > 120 > 60

Peak torque N.m 375 192

Continuous torque N.m > 130 > 125

Peak efficiency % 96 96

DC voltage V 720 350

RMS Line current A 500 275

Maximum speed rpm 18000 13000

Efficiency 
maps

Continuous 
performance

IR-IM
Torque

IR-IM
Power
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Design optimisation
Towards a better motor 
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Motor-CAD & optiSlang

Coupling via customised Python 
scripts and the ActiveX connection

Workflow

Sensitivity analysis Metamodel of prognosis Optimisation
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Setup

Fixed parameters: max. dimensions, cooling system, 
slot/pole/bar combination, winding, materials, drive 
settings, max. temperatures

Variables Bounds

Slot width/Slot pitch [0.45; 0.75]

Active length [100; 150] mm

Bar opening depth [0.5; 2] mm

Stator ID/Stator OD [0.5; 0.75]

Slot depth/(Slot depth + Stator yoke) [0.25; 0.7]

Bar depth/(Bar depth + Rotor Yoke) [0.3; 0.6]

Slot opening width/Slot width [0.2; 0.8]

Bottom bar width/Bar pitch [0.2; 0.6]

Top bar width/Bar pitch [0.3; 0.65]

Goal(s) and constraint(s

𝑇 = 𝑇𝑜𝑟𝑞𝑢𝑒; 𝐿 = 𝐿𝑒𝑛𝑔𝑡ℎ; 𝐿𝑆 = 𝐿𝑜𝑤 𝑆𝑝𝑒𝑒𝑑; 𝑀𝑃 = 𝑀𝑎𝑥 𝑃𝑜𝑤𝑒𝑟

Scenario 1 

max 𝑇𝑝𝑒𝑎𝑘@𝐿𝑆

𝑇𝑐𝑜𝑛𝑡@6𝑘𝑟𝑝𝑚 > 130𝑁.𝑚
𝑃𝑝𝑒𝑎𝑘@𝑀𝑃 > 200𝑘𝑊

𝑃𝑐𝑜𝑛𝑡@𝑀𝑃 > 120𝑘𝑊

Scenario 2

min 𝐿
𝑇𝑝𝑒𝑎𝑘@𝐿𝑆 > 280𝑁.𝑚

𝑃𝑝𝑒𝑎𝑘@𝑀𝑃 > 200𝑘𝑊

𝑃𝑐𝑜𝑛𝑡@𝑀𝑃 > 120𝑘𝑊
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• Better peak and continuous 
performance over the full speed range

• 96% peak efficiency in a larger area

• Length maximised to its max bounds

• Higher split ratio

• Bar cross sectional area increased

Results: scenario 1

Reference
design

Optimised 
design
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• Length reduced by 23% compared to the 
reference design

• 96% peak efficiency in a large area

• Larger bar area and higher split ratio 

• Continuous performance at low speed 
sufficient? → Pareto front

Results: scenario 2

Reference

Optimised
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Scenario 2

Pareto front (1)

min 𝐿
𝑇𝑝𝑒𝑎𝑘@𝐿𝑆 > 280𝑁.𝑚

𝑃𝑝𝑒𝑎𝑘@𝑀𝑃 > 200𝑘𝑊

𝑃𝑐𝑜𝑛𝑡@𝑀𝑃 > 120𝑘𝑊
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Pareto front (2)

Continuous

Peak

Peak

Continuous

• The longer the machine the better the thermal envelope

• Different tendency for the peak operation



43

Conclusion
Main results & Outlooks
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Conclusion
Main results (Task 3.1)
• IR-IM and OR-IM solutions are potential structures to be used for ReFreeDrive application 

and eMobility overall
• Mechanical stress calculations showed poor safety factors for OR-IM solution that needs 

for refinements 
• Materials for the rotor bars and the rotor and stator cores were selected according to the 

best performance to cost ratio
• IR-IM was optimised to reduce the cost while meeting the power and torque 

requirements based on ReFreeDrive boundary conditions 

Outlooks (Task 3.2)
• Sensitivity analysis, optimisation and thermal analysis on the OR-IM design
• 3D mechanical stress FEA to be performed on the fabricated copper rotor IM
• Parameters from the cooling system to be included in the optimisation for better 

efficiency and continuous performance
• Solution with spray cooling to be investigated
• Scalability principles to be applied to the optimal designs
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Thank you for your 
attention!

Any questions
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